Стали со специальными свойствами
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Корро зи онностойкие (нержавеющие) стали. Коррозией называет­ся разрушение металла под действием внешней агрессивной среды в результате ее химического или электрохимического воздействия. Различают химическую коррозию, обусловленную воздействием на металл сухих газов и неэлектролитов (например, нефтепродуктов) и электро­химическую, возникающую под действием жидких электролитов или влажного воздуха. По характеру коррозионного разрушения различают сплошную и местную коррозию. Сплошная коррозия захватывает всю поверхность металла. Ее делят на равномерную и неравномерную в зависимости от того, одинаковая ли глубина коррозионного разруше­ния на разных участках. При местной коррозии поражения локальны. В зависимости от степени локализации различают пятнистую, язвен­ную, точечную, межкристаллитную и др. виды местной коррозии.

Самый надежный способ защиты от коррозии — применение коррозионностойких сталей. Коррозионная стойкость достигается при введении в сталь элементов, образующих на ее поверхности тонкие и прочные оксидные пленки. Наилучший из этих элементов — хром. При введении в сталь 12-14% хрома она становится устойчивой про­тив коррозии в атмосфере, воде, ряде кислот, щелочей и солей. Ста­ли, содержащие меньшее количество хрома, подвержены коррозии точно так же, как и углеродистые стали. В технике применяют хроми­стые и хромоникелевые коррозионностойкие стали.

Хромистые коррозионностойкие стали могут содержать 13, 17 или 25-27% хрома. Стали марок 08X13, 12X13, 20X13 подвергают­ся закалке от 1000°С и отпуску при 60О-7О0°С. Их применяют для изготовления деталей с повышенной пластичностью, работающих в слабоагрессивных средах. Стали 30X13, 40X13 подвергаются закал­ке и отпуску при 200-300°С. Из них изготавливают режущий, мери­тельный и хирургический инструмент.

Стали 12X17, 15X28 имеют более высокую коррозионную стой­кость. Подвергаются отжигу при температуре 700-780°С. Используются для оборудования заводов легкой и пищевой промышленности, труб, работающих в агрессивных средах, для кухонной посуды.

Хромоникелевые стали обычно содержат 18% хрома и 9-12% никеля (04Х18Н10, 12Х18Н10Т, 12Х18Н12Т и др.). Они имеют бо­лее высокую коррозионную стойкость по сравнению с хромистыми сталями, лучшие механические свойства, хорошо свариваются. Эти стали имеют аустенитную структуру. Их термообработка состоит из закалки от температуры 1100-1150°С в воде без отпуска.

Хромоникелевые стали склонны к межкристаллитной коррозии. Она быстро распространяется по границам зерен без заметных вне­шних признаков. Это происходит вследствие образования карбидов хрома по границам зерен, что приводит к уменьшению содержания хрома в поверхностном слое зерна. Чтобы карбиды хрома не обра­зовывались, надо либо использовать стали с пониженным содержа­нием углерода (до 0,04%), либо дополнительно легировать сталь ти­таном, связывающим углерод в карбид титана.

Используются хромоникелевые стали в пищевой и химической промышленности, в холодильной технике. Поскольку никель доро­гостоящий элемент, иногда его частично заменяют марганцем и ис­пользуют сталь 10Х14Г14Н4Т.

Другие методы защиты от коррозии. Распространенным средством защиты от коррозии является нанесение на защищаемый металл раз­личных покрытий. Металлические покрытия наносятся различными способами. При погружении в расплавленный металл поверхность из­делия покрывается тонким и плотным слоем, затвердевающим после извлечения изделия. Этот способ применяется для нанесения покрытий цинком, оловом, свинцом и алюминием, температура плавления кото­рых ниже, чем у защищаемого металла. При диффузионной металлиза­ции изделие засыпают порошками алюминия, хрома, цинка и выдержи­вают при высокой температуре. При напылении поверхность изделия покрывают слоем расплавленного металла (цинка, алюминия, кадмия и др.) с помощью воздушной струи. При плакировании защищаемый ме­талл подвергают совместной прокатке с защищающим (алюминием, титаном, нержавеющей сталью). Гальванический способ нанесения по­крытий основан на осаждении под действием электрического тока тон­кого слоя защитного металла (хрома, никеля, меди, кадмия) при погру­жении защищаемого изделия в раствор электролита.

Неметаллические покрытия подразделяются на лакокрасочные и эмалевые, смоляные, покрытия пленочными полимерными мате­риалами, резиной, смазочными материалами, керамические покрытия и др. Покрытия, получаемые химической и электрохимической обработкой, превращают поверхностный слой изделия в химическое соединение, образующее сплошную защитную пленку. Наибольшее распространение имеют оксидные и фосфатные защитные пленки.

Протекторная защита основана на подсоединении к защищае­мому изделию протектора с более отрицательным электрохимичес­ким потенциалом. В агрессивной среде протектор будет являться анодом и разрушаться, а защищаемое изделие — катодом и разру­шаться не будет.

Для уменьшения агрессивности окружающей среды в нее вво­дят добавки, называемые ингибиторами коррозии. Они значитель­но снижают скорость коррозии. Условием использования ингиби­торов является эксплуатация изделия в замкнутой среде постоянного состава.

Жаростойкие и жаропрочные стали. Под жаростойкими сталя­ми понимают стали, обладающие стойкостью против химического разрушения поверхности при высокой температуре (свыше 550°С) . При нагреве стали происходит окисление поверхности и образуется оксидная пленка (окалина). Дальнейшее окисление определяется ско­ростью проникновения атомов кислорода через эту пленку. Через пленку оксидов железа они проникают очень легко. Для повышения жаростойкости сталь легируют элементами, образующими плотную пленку, через которую атомы кислорода не проникают. Эти элемен­ты — хром, алюминий, кремний. Так как алюминий и кремний по­вышают хрупкость стали, чаще всего применяют хром. Чем больше его содержание, тем более жаропрочной является сталь. Сталь 15X5 выдерживает до 600°С, 40Х9С2 — до 800°С, рассмотренные ранее 12X17 —до 900°С и 15X28 —до 1050°С.

Жаропрочные материалы способны противостоять механическим нагрузкам при высоких температурах. Жаропрочные стали класси­фицируются по структуре.

Перлитные стали содержат малое количество углерода, легиру­ются хромом молибденом, ванадием (12ХМ, 12Х1МФ). Используют для изготовления труб, паропроводов и др. деталей, длительно рабо­тающих при температуре 500-550°С.

Мартенситные стали в большом количестве легированы хро­мом (15X11МФ, 15Х12ВНМФ). Они используются для деталей энер­гетического оборудования, длительно работающего при температу­ре 600-620°С. Особую группу мартенситных сталей составляют сильхромы, применяемые для клапанов двигателей внутреннего сгорания. Они дополнительно легированы кремнием (40Х9С2, 40X10С2М).

Аустенитные стали легированы большим количеством хрома и никеля а также другими элементами (09Х14Н16Б, 09Х14Н19В2БР). Из этих сталей изготавливают детали газовых турбин, работающих при температуре 600-700°С.

Для работы при более высоких температурах (70()-900°С) слу­жат сплавы на основе никеля, называемые нимониками. Примером нимоника является сплав ХН77ТЮР, содержащий кроме никеля приблизительно 20% Сг, 2,5% Ti, 1% А1.

Для работы при температурах свыше 1000°С используют тугоп­лавкие металлы и их сплавы. Это — хром, ниобий, молибден, тан­тал, вольфрам. Они используются в атомной энергетике и в косми­ческой технике.

Температуры 1500-1700°С выдерживают жаропрочные керами­ческие материалы на основе карбида и нитрида кремния.

Сплавы с «памятью»

Обычные стали и сплавы после пластической деформации не вос­станавливают свою форму. Особенностью сплавов, обладающих эф­фектом «памяти», является то, что нагрев, выполненный после хо­лодной пластической деформации, восстанавливает форму, кото­рую имело изделие при высоких температурах. Эта форма сохраняется и после охлаждения. Так, если проволоку закрутить в спираль при высокой температуре, а при низкой выпрямить (т.е. раскрутить), то повторный нагрев вызывает изменение формы — проволока вновь приобретает форму спирали и сохраняет эту форму при охлаждении.

В настоящее время известно большое количество таких сплавов. Наибольшее распространение получили сплавы типа «нитинол» на основе NiTi. Эффект памяти в них повторяется в течение многих тысяч циклов. Нитинол применяют в автоматических прерывателях тока, запоминающих устройствах, температурно-чувствительных датчиках. Имеются данные, что из него изготавливают антенны спутников. Антенну скручивают в маленький бунт, в космосе она восстанавливает свою форму при нагреве.

 

Аморфные сплавы (металлические стекла)

Металлы и сплавы в аморфном состоянии, т. е. металлические стекла, впервые были получены в 1959-1960 гг. Свойства металли­ческих сплавов в аморфном и кристаллическом состояниях имеют существенные отличия. Металлические стекла обладают сочетани­ем высоких механических, магнитных, антикоррозионных свойств.

Аморфная структура образуется при сверхвысоких скоростях ох­лаждения — 106 К/с и выше (скорость охлаждения при получении отливок традиционными методами около 1К/с). Существует ряд методов достижения таких скоростей.

1. Высокоскоростное ионно-плазменное и термическое распы­ление материала с последующей конденсацией паров на охлаждае­мую жидким азотом подложку. Скорость охлаждения около 1013 К/с.

2. Оплавление тонких поверхностных слоев де­талей лазерным лучом, при этом высокая скорость охлаждения обеспечивается быстрым отводом теп­лоты в глубьлежащие слои металла. Скорость ох­лаждения 107-109 К/с.

3. Закалка из жидкого состояния. Скорость охлаждения 106—109 К/с.

Закалка из жидкого состояния — основной метод получения ме­таллических стекол. 

Аморфная структура металлических стекол нестабильна, она стре­мится перейти в более равновесную, т.е. кристаллическую. Это про­исходит при нагреве до температуры выше температуры кристалли­зации Ткр = (0,4...0,65) Тпл, где Тпл — температура плавления.

Маркировка аморфных сплавов отличается от принятой для ста­лей и сплавов. Они обозначаются аналогично химическим соедине­ниям. Цифры показывают содержание элемента в атомных процен­тах, например Fe80B20.

Металлические стекла обладают особыми электрическими и магнитными свойствами. Так, удельное электросопротивление спла­ва Ni67Si7B26 в 1,5 раза больше, чем у нихрома (традиционный сплав с высоким сопротивлением), — для них значения р·Кг4 соответ­ственно равны 1,55 и 1,08 Ом·см.

Железокобальтовые сплавы обладают высокой магнитной проница­емостью и малой коэрцитивной силой, что важно для магнитомягких материалов. Коэрцитивная сила тем меньше, чем крупнее зерно, струк­тура аморфных сплавов представляет собой как бы одно зерно.

Применение этих материалов ограничено температурой. Свои свой­ства они сохраняют лишь ниже Ткр . Кроме того, сортамент их выпус­ка ограничен — это тонкие фольги, ленты, нити, так как в больших сечениях невозможно добиться сверхвысоких скоростей охлаждения. Основная область применения — микроэлектроника, радиоэлектро­ника, где используются фольги и тонкие пленки.

 

Дата: 2018-12-28, просмотров: 539.