Приготовление маркировочной мастики
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Окись серебра и борнокислый свинец просушивают 1 час при температуре примерно 120 0С, отмеряют согласно рецепту и перемешивают с помощью шпателя в фарфоровой чашке 7-10 мин, добавляют глицерин и снова перетирают 30-40 мин до получения однородной массы. Приготовленная мастика перед употреблением выдерживается в течении 24 часов, после чего она должна иметь поверхность с металлическим блеском.

В последнее время всё более частое применение находит маркировачная мастика на основе термостойкого керамического красителя, предназначенная для внесения марки на наружную поверхность стеклянной колбы ламп. Для её приготовления берётся необходимая масса просеянной керамической краски, добавляется по рецепту дистиллированный глицерин и производится их перемешивание с тщательным растиранием в фарфоровой ступке в течение 30 мин или в небольшом барабане шаровой мельницы со стальными шарами. Приготовленная мастика должна быть однородной, тёмно-красного цвета.

Маркировка

На колбу или цоколь ламп наносят оттиск (марку) с обозначением товарного знака завода-изготовителя, основных параметров ламп и при необходимости других сведений, требуемых для быстрого распознавания ламп. Колбы маркируют автоматически во время заварки ламп, а цоколи вручную после припайки вводов и обжига ламп. Маркировка колб требует закрепления оттиска при высокой температуре, поэтому не может быть применена на готовых лампах.

Маркировка – обязательная технологическая операция. Марка должна быть поставлена без переноса в месте, свободном от бокового припоя. Она должна иметь отчётливое нестирающееся и несмываемое изображение и не вызывать коррозии цоколя. Текст её должен давать правильную информацию о лампах.

Нанесение на криволинейную поверхность цоколей большого числа печатных знаков – малопроизводительная операция, плохо поддающаяся механизации. Поэтому всегда предпочитают автоматически маркировать колбы при заварке ламп вместо ручной маркировки цоколей после припайки электродов.

Откачка

Вакуумная лампа накаливания общего назначения В 220 - 25 подвергается автоматической или полуавтоматической откачки. Вакуумной обработкой обеспечивается удаление атмосферного воздуха, обезгаживание стекла и внутренних деталей лампы.

Откачные автоматы для ламп накаливания общего назначения представляют собой машины карусельного типа, имеющие неподвижную часть – станину и вращающуюся – карусель. На горизонтальной карусели по её окружности расположены на определённом расстоянии друг от друга откачные гнёзда для установки и герметизации ламп.

Уплотнение между ними станиной и каруселью производится с помощью золотника, состоящего из двух массивных стальных дисков: неподвижного, установленного на станине автомата, и прилегающего к нему подвижного диска, связанных с периодически поворачивающейся каруселью. Прилегающие друг к другу плоскости золотников пришлифованы, и между ними по кольцевым канавкам для уплотнения вводится касторовое масло или вязкое масло «вапор». Масло образует тонкую плёнку между золотниками, предохраняющую их от непосредственного соприкосновения и сухого трения между собой.

По боковой цилиндрической поверхности подвижного золотника по окружности вставлены стальные штуцера.

Во время остановок карусели каналы верхнего и нижнего золотников точно совмещаются. Число отверстий в неподвижном золотнике на два-четыре меньше (на этих позициях происходят загрузка и съём ламп).

Штуцера нижнего золотника через трубопроводы подсоединены к вакуумным насосам.

Кроме того, откачной автомат имеет неподвижную дугообразную туннельную печь с газовым или электрическим нагревом и отпаячные горелки. Наиболее распространённым автоматом для откачки ламп накаливания общего назначения является заварочно-откачной автомат Б.332.03. Он имеет общую станину с раздельными каруселями заварки и откачки.

Промывка

Промывкой достигается уменьшение парциального давления вредных газов в лампе. Сущность этого процесса состоит в том, что после достижения необходимого давления в лампе (1-10 Па) её наполняют промывочным (инертным) газом (азот, аргон и др.), а затем снова откачивают. Такой цикл может повторяться несколько раз.

При каждом наполнении ламп остаточные вредные газы смешиваются (разбавляются) с промывочными газами и вместе с ним откачиваются. Тем самым уменьшается парциальное давление вредных газов в лампе.

Парциальное давление вредных газов в лампе определяется по уравнению

,

где: p – парциальное давление вредных газов в лампе после последней промывки, Па;

p0 - давление в лампе перед промывкой, Па;

p1 – давление в лампе после откачки промывочного газа, Па;

p2 - давление в лампе после наполнения промывочным газом, Па;

n – число промывок.

Многократной промывкой достигается значительно более низкое давление вредных газов, чем откачкой насосами.

При вакуумной обработке некоторых типов ламп выгодно вводить промывочный газ на переходах между позициями откачного автомата.

Отпайка ламп

Вакуумные лампы после завершения откачки автоматически отпаивают от откачного автомата. Огни горелок на одной - двух позициях, предшествующих позиции отпайки, нагревают штенгель лампы до температуры близкой к размягчению. Далее на позиции отпайки специальный механизм, приводимый в действие одним из кулачков распределительного вала автомата, приподнимает лампу и заставляет размягчённое место штенгеля растянуться и сузиться в каппилярную перетяжку. Отпаячные огни переплавляют в месте перетяжки стекло и отделяют лампу от нижней части штенгеля. Лампа подхватывается другим механизмом и переносится в транспортёр для передачи на следующую операцию.

Правильная отпайка ламп требует точной настройки огней отпаячной горелки. Неточная настройка может служить причиной натекания воздуха в лампу. Наличие внутренних напряжений в носике может привести к его растрескиванию. Полезным средством против натекания и растрескивания служит предварительный подогрев штенгеля пред позицией отпайки. Подогревные огни позволяют поддерживать отпаячные огни менее резкими и бычтро отпаивать лампы за время кратковременной остановки карусели, что особенно важно для автоматов с большой производительностью.

Во время отпайки из размягченного стекла выделяется абсорбированный газ, ухудшающий вакуум в лампах. Его приходится впоследствии обезвреживать газопоглотителем. Предварительный подогрев места будущего носика на одной – двух позициях, предшествующих позиции отпайки, позволяет откачать из лампы значительную часть газа, выделяющегося из штенгеля.

Изготовление цоколя

Резьбовые цоколи являются наиболее массовым типом цоколей для ламп накаливания общего назначения. Корпус резьбового цоколя чаще всего изготавливают из мягкой стальной ленты с последующим цинкованием для защиты от коррозии. Контактные пластины всегда изготавливаются из латуни. В качестве изоляции применяют специальные пластмассу или фарфор, стекло, скрепляющие элементы цоколя в единую конструкцию.

На отечественных электроламповых заводах изготовление резьбовых цоколей ведётся в следующей последовательности: штамповка корпуса, накатка резьбы на корпусе цоколя, штамповка контактной пластины, сборка цоколя, штамповка контактной пластины, сборка цоколя, травление, нанесение антикоррозионного покрытия.

Штамповка корпуса. Штамповка корпуса цоколя Е27-1 из стальной ленты производится на кривошипном прессе-автомате с грейферной подачей отштампованных корпусов. Из ленты шириной 54 мм вырубаются диски диаметром 55,5 мм с шагом 54 мм так, что края дисков оказываются срезанными, а от ленты остаются маленькие не связанные между собой треугольники. На первой операции вместе с вырубкой производится и первая вытяжка стаканчика диаметром 28,5 мм, который грейфером передаётся на вторую вытяжку, совмещённую с пробивкой отверстия диаметром 15 мм, а затем на заключительную операцию-обрубку облоя и калибровку, в результате которой стаканчик получает диаметр 26 мм, а высоту 22 мм. Таким образом, штамповка корпуса занимает три позиции и обычно на пресс-автомат устанавливаются две ленты.

При штамповке на многорядном (обычно четырёхрядном) штампе используется стальная лента шириной 250 мм, из которой вытягиваются четыре ряда стаканчиков. На первой позиции производится просечка двух концентрических прерывистых щелей диаметром 54 и 59 мм, отделяющих заготовку корпуса цоколя от ленты по контуру с сохранением небольших перемычек. Перемычки между щелями удерживают получившийся диск в ленте, которая и перемещает заготовки с позиции на позицию. При многорядной штамповке производится последовательно три вытяжки до диаметра 33; 26,1; 26,05 мм соответственно, после чего на отдельной позиции пробивается отверстие. Заключительной операцией является обрубка облоя, в результате чего готовый стаканчик отделяется от ленты. Оставшаяся перфорированная лента нарезается гильотинными ножницами, связанными со штампом, на мелкие полоски для удобства удаления отходов. Производительность прессов с многорядными штампами достигает 30-36 тыс. в час.

Травление цоколей. Стальные цоколи пред цинкованием травятся. Цоколи обезжиривают 2-10 % -ным раствором каустической соды и промывают в холодной проточной воде. Затем их травят в подогретом (не выше 500С) 15-20 %-ном растворе серной или 5-10 %-ном растворе соляной кислоты в течении 5-10 мин и промывают в проточной холодной воде.

Латунные цоколи сначала отбеливают, т.е. удаляют окислы и загрязнения, после чего производят блестящее травление – придают цоколям глянцевую поверхность и, наконец, пассивируют – создают постоянную плотную плёнку, сохраняющую естественный цвет латуни и предохраняющую от более глубокого окисления.

Для отбеливания применяют разбавленный водой раствор, предварительно использованный на блестящем травлении, после чего цоколи промывают в холодной проточной воде.

Цинкование стальных цоколей производят в гальванических ваннах. Во вращающийся барабан загружают одновременно до 3000 цоколей.

На латунные штанги подвешены цинковые плитки – аноды.

На цоколи через латунную или медную струну подаётся отрицательный потенциал. Ванна питается постоянным током при напряжении 9-11 В от двигателя-генератора.

Электролит для цинкования цоколей состоит из 300 – 350 г сернокислого цинка, 100 – 150 г сернокислого натрия, 20 - 30 г гидрата сернокислого алюминия на 1000 см3 воды. Плотность электролита 1180-1220 кг/м3.

При электролизе сернокислый цинк разлагается на положительные ионы цинка Zn+ и отрицательные – кислотного остатка SO4 . Ионы цинка, разряжаясь у катода (цоколей), осаждаются на их поверхность. Ионы кислотного остатка, достигая анода, реагируют с ним и образуют сернокислый цинк, который пополняет электролит.

Качество покрытия зависит от плотности тока в ванне, температуры, плотности электролита, концентрации водородных ионов, длительности процесса покрытия и др.

Температура электролита должна быть 40-50 0С, при этой температуре электрическая проводимость электролита наиболее высокая.

Концентрация водородных ионов (рН) должна быть около 4. При недостаточно кислом электролите (рН > 4,5) покрытие получается тёмным и крупнокристаллическим; при кислом (рН < 3,5) – покрытие светлое, но рыхлое и пористое. Для автоматического регулирования кислотности в электролит вводят сернокислый аммоний или алюминиевые квасцы.

Толщина покрытия цинком должна быть не менее 5 мкм, а для усиленного покрытия некоторых цоколей – не менее 10-12 мкм.

Обычно при массовом изготовлении цоколей Е27-1 травление и цинкование их производят автоматически. Автоматизация охватывает загрузку и выгрузку цоколей и последовательную транспортировку цоколей по монорельсу из одной ванны в другую.

Цоколёвачной мастики

Мастика, применяемая для крепления цоколя к лампе, должна обладать следующими способностями: намазываться на цоколь (пластичность), переходить из пластичного состояния в твёрдое (схватываемость), приклеиваться к колбе и цоколю (адгезия), не допускать утечки тока между внешними звеньями электродов (диэлектрические свойства), не разрушаться под влиянием влаги (влагостойкость), не разрушаться при температуре 130-140 0С (термостойкость) и не разрушаться при приложении к цоколю заданного крутящего момента (прочность). Мастика должна допускать возможность в необходимых случаях отделять цоколь от лампы.

 

 

Цоколевание

Все источники света, за исключением некоторых типов специальных ламп, имеют цоколь, с помощью которого лампы крепятся к осветительной арматуре и подключаются к источникам питания.

Крепление цоколей к лампам производится с помощью специальных мастик и цементов или же механическим способом.

Перед цоколеванием ламп В 220 – 25 идитоловой мастикой производят намазку цоколей на специальных автоматах. Намазка цоколей состоит в том, чтобы на край внутренней поверхности цоколя нанести кольцевой поясок мастики толщиной 2-3 мм. Намазанные цоколи перед цоколеванием могут выдерживаться некоторое время, но не более 16 часов во избежание порчи мастики.

Цоколевание ламп производится на специальных цоколёвочных машинах карусельного типа, имеющих производительность более 2000 шт/мин. Для различных источников света применяются разнообразные машины, отличающиеся конструктивным исполнением, габаритами, количеством рабочих гнёзд, выполнением дополнительных технологических операций в процессе цоколевания ламп и т.д. Но все они выполняют одну и ту же задачу – обеспечение полимеризации мастики и надёжного скрепления цоколя с лампой.

Приварка вводов

С целью экономии дефицитных припоев, боковой ввод можно не припаивать к цоколю, а приваривать. Медь с латунью плохо сваривается, а медь со сталью и особенно платинит со сталью свариваются хорошо. Поэтому боковой вывод с успехом приваривают к стальным цинкованным цоколям, особенно если он изготовлен из платинита. Приварку производят на таком же аппарате точечной сварки, какой применяют для приварки спирали с той лишь разницей, что рабочему концу его нижнего хобота придают форму корытца. Ввод, протянутый между горлом лампы и краем надетого на него цоколя обрезают коротко, чтобы придать ему жёсткость, необходимую для получения хорошего контакта при сварке. В зазоре, образующемся между корпусом цоколя и верхним хоботом аппарата, возникает дуга, вплавляющая вывод в цоколь.

Около приваренных выводов улетучивается слой цинка. Однако образующееся окисное пятно препятствует развитию коррозии. Такое же пятно образуется на противоположной стороне цоколя, если последний во время приварки был неплотно прижат к концу нижнего хобота. Грязные или окисленные вводы затрудняют приварку. Для выборочной оценки прочности приварки пользуются прибором, которым зацепляют приваренный ввод и оттягивают его с приложением силы 0,5 кг; хорошо приваренный ввод не должен при этом отделятся от цоколя.

Условия труда при приварке более благоприятны, чем при припайки благодаря отсутствию вредных испарений припоя и флюса.

Обжиг лампы

Технологическая операция, проводимая для ламп накаливания с целью улучшения вакуума в отпаянной лампе и формирования надлежащей кристаллической структуры ТН, называется обжигом.

Для вакуумных ламп накаливания обжиг проводится в два этапа, первый из которых носит название «аблиц». Особенностью этого этапа является то, что его проведение сопровождается кратковременным тлеющим электрическим разрядом в лампе.

При аблице вначале на лампу подаётся напряжение несколько ниже номинального. При этом проходит выделение остаточных газов из нагретых деталей лампы и быстрое испарение газопоглотителя. Давление в лампе повышается. Газы и пары, под действием испускаемых ТН электронов и ускоряющего действия электрического поля, ионизируются и становятся токопроводящими. Ток в цепи лампы начинает проходить не только через ТН, но и через пары и газы, вызывая их свечение. Когда газопоглотитель свяжет основную массу остаточных газов, давление в лампе понизится и свечение исчезнет.

Второй этап обжига проводится сразу же после аблица.

С этой целью, на несколько минут, на лампу подаётся напряжение на 15% выше номинального. При этом за счёт теплового излучения нагреваются стенки колбы и детали ножки, которые выделяют некоторое количество газов. Эти газы поглощаются отложившимися на колбе фосфорным поглотителем.

Контроль и испытания ламп

Конструкция тех или иных источников света и применяемая технология должна обеспечивать стабильность световых параметров и механическую прочность ламп в течении всего срока службы, при транспортировке и хранении ламп – в пределах норм, установленных стандартами или техническими условиями.

Однако не может быть гарантии, что все 100% изготовляемых ламп обладают всеми параметрами и свойствами для нормальной работы в заданных режимах. Как показала практика, часть ламп в зависимости от технического уровня производства имеет отклонение от заданных параметров. Такие лампы должны быть обнаружены и не выпущены с завода.

Правильно организованный систематический контроль производства позволяет оперативно не только ликвидировать возникший брак, но вовремя предупредить его.

Основным методом контроля производства является испытания ламп. Испытанием ламп преследуют две цели:

Первая – определение способности ламп нормально работать в режимах (электрических, механических, тепловых, климатических и др.), оговорённых в стандартах и технических условиях.

Вторая – определение измеряемых параметров ламп, их средних значений и распределения параметров у партий ламп, продукции за день, декаду, месяц и т.д.; на основании полученных данных определяется технологический запас по тем или иным параметрам и задаются новые технические нормы на контроль материалов и деталей, на допуски при изготовлении технологического инструмента, на технологические процессы и т.д.

Дата: 2019-02-02, просмотров: 216.