Проводящие пути зрительного анализатора
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Первый нейрон зрительного анализатора – это биполярная клетка, второй нейрон – ганглиозная. Зрительный нерв состоит из аксонов ганглиозных клеток. В области основания черепа часть волокон зрительного нерва переходит на противоположную сторону. Остальные волокна вместе с перекрещенными аксонами второго зрительного нерва образуют зрительный тракт, волокна которого идут в подкорковые центры: латеральные коленчатые тела, верхние бугры четверохолмия, подушку зрительного бугра, супрахиазматическое ядро гипоталамуса и ядра глазодвигательного нерва. В этих подкорковых структурах находятся остальные нейроны зрительных путей. Аксоны клеток латерального коленчатого тела в составе зрительной радиации направляются в затылочную долю, к центральной части зрительного анализатора, локализованной в клетках первичной зрительной зоны (поле 17), которая связана с вторичными зрительными зонами (поля 18 и 19) коры больших полушарий.

Уже на уровне сетчатки, благодаря сложной организации и специализации нейронов происходит определение таких сложных качеств светового сигнала, как освещенность, цвет, форма, движение сигнала.

В подкорковых структурах анализатора зрительная информация подвергается дальнейшей, более сложной переработке, вычленению и выявлению новых качеств стимула за счет наличия более сложных рецептивных полей, колонок – вертикальных скоплений нейронов, предназначенных для расчленения информации на отдельные составляющие. На этом уровне уже начинается взаимодействие обоих глаз.

Благодаря нейронам зрительной коры происходит основной анализ зрительной информации с обязательным участием колонок; здесь имеются возбуждающие и тормозные зоны. Бинокулярное зрение обеспечивается за счет деятельности коркового конца зрительного анализатора, в одной точке представлены симметричные поля зрения справа и слева.

 

Цветовое зрение

 

Цветовое зрение – это способность зрительного анализатора реагировать на изменения светового диапазона между коротковолновым – фиолетовым цветом (длина волны от 400 нм) и длинноволновым – красным цветом (длина волны 700 нм) с формированием ощущения цвета. Все остальные цвета: синий, желтый, зеленый, оранжевый имеют промежуточные значения длины волны. Если смешать лучи всех цветов, то получим белый цвет.

Существуют две теории цветового зрения. Первая – трехкомпонентная теория цветоощущения Г. Гельмгольца пользуется наибольшим признанием. Согласно этой теории в сетчатке имеются три вида колбочек, отдельно воспринимающих красный, зеленый и сине-фиолетовый цвета. Различные сочетания возбуждения колбочек приводят к ощущению промежуточных цветов. Равномерное возбуждение всех трех видов колбочек дает ощущение белого цвета. Черный цвет ощущается в том случае, если колбочки не возбуждаются.

Согласно второй контрастной теории Э. Геринга, основанной на существовании в колбочках трех светочувствительных веществ (бело-черное, красно-зеленое, желто-синее), под влиянием одних световых лучей происходит распад этих веществ и возникает ощущение белого, красного, желтого цветов. Другие световые лучи синтезируют эти вещества и в результате получается ощущение черного, зеленого и синего цветов.

Впервые частичная цветовая слепота была описана Д. Дальтоном, который сам ею страдал (дальтонизм). В основном дальтонизмом страдают мужчины (8%) и только 0,5% – женщины. Ее возникновение связано с отсутствием определенных генов в половой непарной у мужчин х-хромосоме.

 

Различают три типа нарушений цветового зрения:  

1. Протанопия, или дальтонизм – слепота на красный и зеленый цвета, оттенки красного и зеленого цвета не различаются, сине-голубые лучи кажутся бесцветными.

2. Дейтеранопия – слепота на красный и зеленый цвета. Нет отличий зеленого цвета от темно-красного и голубого.

3. Тританопия – редко встречающаяся аномалия, не различаются синий и фиолетовый цвета.

4. Ахромазия – полная цветовая слепота при поражении колбочкового аппарата сетчатки. Все цвета воспринимаются как оттенки серого.

 

Восприятие пространства

 

Острота зрения – это наименьшее расстояние между двумя точками, которые глаз способен видеть раздельно. Нормальный глаз способен различать две светящиеся точки под углом зрения в 1', острота зрения такого глаза, или визус, (visus) равна 1,0. Острота зрения определяется с помощью буквенных или различного рода фигурных стандартных таблиц.

При фиксированном на каком-либо предмете взгляде он воспринимается центральным зрением. Предметы, изображения которых попадают не на центральную ямку, а на остальные участки сетчатки, воспринимаются периферическим зрением. Пространство, которое человек может видеть фиксированным взглядом, называется полем зрения. Оно определяется с помощью прибора периметра (метод периметрии). Различают отдельно поле зрения для левого и правого глаза и общее поле зрения для двух глаз. Оно неодинаково в различных меридианах, книзу и кнаружи оно больше, чем кнутри и кверху. Самое большое поле зрения для белого цвета, самое узкое – для зеленого, желтого, больше – для синего и красного.

Ощущение глубины пространства обеспечивается бинокулярным зрением. У человека с нормальным зрением при рассматривании предмета двумя глазами изображение попадает на симметричные (идентичные) точки сетчатки, а корковый отдел анализатора объединяет его в единое целое, давая одно изображение. Если изображение попадает на неидентичные, или диспаратные, точки двух сетчаток, то изображение раздваивается. При надавливании на глаз сбоку начинает двоиться в глазах, так как нарушилось соответствие сетчаток.

 

 

Слуховой анализатор

 

Слуховой анализатор воспринимает звуковые сигналы, представляющие собой колебания воздуха с разной частотой и силой, трансформирует механическую энергию этих колебаний в нервное возбуждение, которое субъективно воспринимается как звуковое ощущение.

 

Периферическая часть слухового анализатора или орган слуха состоит из трех основных отделов:  

1. Звукоулавливающий аппарат (наружное ухо).

2. Звукопередающий аппарат (среднее ухо).

3. Звуковоспринимающий аппарат (внутреннее ухо).

 

Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки. Ушная раковина, подобно локатору, улавливает звуковые колебания, концентрирует их и направляет в наружный слуховой проход. Эта функция особенно хорошо развита у некоторых видов животных (собак, кошек, летучих мышей), у которых благодаря рефлекторному управлению ушной раковиной происходит определение местонахождения источника звука.

Наружный слуховой проход проводит звуковые колебания к барабанной перепонке и играет роль резонатора, собственная частота колебаний которого составляет 3000 Гц. При действии на ухо звуковых колебаний, близких по своим значениям к 3000 Гц, давление на барабанную перепонку увеличивается. Наружное ухо выполняет защитную функцию, охраняя отдельные структуры уха от механических и температурных воздействий, обеспечивает постоянную температуру и влажность, необходимую для сохранения упругих свойств барабанной перепонки.

На границе между наружным и средним ухом находится барабанная перепонка – это малоподвижная и слаборастяжимая мембрана, площадь которой составляет 66 – 69,5 мм2. Она имеет форму конуса с вершиной, направленной в полость среднего уха. Основная функция барабанной перепонки – передача звуковых колебаний в среднее ухо.

Колебания барабанной перепонки передаются в среднее ухо, в котором содержится цепь соединенных между собой косточек: молоточка, наковальни и стремечка. Рукоятка молоточка прикреплена к барабанной перепонке, основание стремечка – к овальному окну. Благодаря передаточной функции слуховых косточек давление звука в области круглого окна улитки увеличивается в 20 раз.

В среднем ухе находятся две мышцы: мышца, натягивающая барабанную перепонку и прикрепленная к ручке молоточка, и стапедиальная, прикрепленная к стремечку. За счет сокращения этих мышц происходит уменьшение амплитуды колебаний барабанной перепонки и снижение коэффициента передачи уровня звукового давления на область внутреннего уха. Эти мышцы выполняют защитную функцию при действии звуковых колебаний больше 90 дБ и действующих длительное время. При резких внезапных звуках (удар в колокол) этот механизм не срабатывает.

Сокращения стапедиальной мышцы происходят при жевании, глотании, зевании, во время речи и пения, при этом низкочастотные звуки подавляются, а высокочастотные проходят к внутреннему уху. В полости среднего уха давление приближается к атмосферному, это необходимо для нормальных колебаний барабанной перепонки. Уравновешиванию давления (при глотании) способствует специальное образование – евстахиева труба, которая соединяет носоглотку с полостью среднего уха.

Внутреннее ухо соединено со средним с помощью овального окна, в котором неподвижно укреплено основание стремечка. Внутреннее ухо состоит из костного и лежащего в нем перепончатого лабиринтов, в котором находятся вестибулярный (преддверие и полукружные каналы) и слуховой аппараты. К последнему относится улитка.

Улитка имеет длину 3,5 мм, что составляет 2,5 завитка. Она разделена двумя мембранами: основной и мембраной Рейснера на три хода или лестницы: барабанную, среднюю и вестибулярную (рис.32). Вестибулярная и барабанная лестницы у верхушки улитки соединены между собой через геликотрему. Обе эти лестницы заполнены перилимфой, сходной по химическому составу со спинномозговой жидкостью и содержащей много ионов натрия (около 140 ммоль/л).

 

 

Средняя лестница изолирована и заполнена эндолимфой, богатой ионами К+ (около 155 ммоль/л) и напоминающей по своему составу внутриклеточную жидкость. Это обусловливает положительный заряд эндолимфы по отношению к перилимфе.

Основание барабанной лестницы сообщается со средним ухом с помощью еще одного отверстия – круглого окна, закрытого тонкой мембраной.

На основной мембране средней лестницы расположен кортиев орган – собственно звуковоспринимающий аппарат, содержащий рецепторы – внутренние и наружные волосковые клетки, несущие только стереоцилии. Внутренних волосковых клеток у человека около 3500, они располагаются в один ряд, и имеются три ряда наружных волосковых клеток, их приблизительно 12 000. Слуховые рецепторы – вторичночувствующие.

Над кортиевым органом находится текториальная (покровная) мембрана – желеобразная масса, соединенная с кортиевым органом и с внутренней стенкой улитки. Стереоцилии наружных и, вероятно, внутренних волосковых клеток контактируют с текториальной мембраной. При движении основной мембраны покровная мембрана сгибает волоски рецепторных клеток, воздействуя в большей степени на наружные волосковые клетки, чем на внутренние. В результате деформации волосков возникает возбуждение волосковых клеток.

На наружной стороне средней лестницы располагается сосудистая полоска – область с высокой метаболической активностью и хорошим кровоснабжением. Ее функция состоит в обеспечении улитки энергией и регуляции состава эндолимфы. Калиевый насос принимает активное участие в поддержании ионного состава эндолимфы и ее положительного потенциала. Некоторые диуретики блокируют не только ионные насосы почечных канальцев, но и влияют на ионные насосы сосудистой полоски, оказывая ототоксическое побочное действие, и могут приводить к глухоте.

Основная мембрана состоит из эластических волокон. Вблизи овального окна у основания улитки она составляет всего 0,04 мм, по направлению к вершине она расширяется и у геликотремы равна уже 0,5 мм. Основная мембрана слабо натянута, что создает условия для колебательных движений в зависимости от воздействия на нее звуковых волн различной частоты. Волокна, расположенные у основания улитки, реагируют как струны-резонаторы на звуки высокой частоты, а у вершины – на низкие частоты.

Дата: 2019-02-02, просмотров: 226.