Светодальномер – прибор, измеряющий расстояние по времени прохождения его световым сигналом.
В комплект светодальномера входят приёмопередатчик и отражатель. Приемопередатчик 1 (рис. 8.6) устанавливают на штативе на одном конце измеряемой линии, а отражатель 2 на специальной вешке или тоже на штативе – на другом.
Рис. 8.6. Измерение расстояния светодальномером
Приёмопередатчик излучает световой сигнал, принимает его после возвращения от отражателя, измеряет время t, прошедшее от излучения до приёма, и вычисляет расстояние
D = vt/2.
Здесь v – скорость света (при средних условиях v » 299710 км/с).
Время t необходимо измерять с высокой точностью. Так, для точности в расстоянии 1 см время надо знать с ошибкой не более 10-10 с. Измерение времени выполняется фазовым или импульсным методом.
Рис. 8.7. Схема импульсного светодальномера
В импульсном светодальномере (рис. 8.7) лазерный источник излучения 3 под воздействием генератора импульсов 2 периодически посылает через объектив 4 световой импульс. Одновременно переключатель 7 запускает счётчик 8 временны¢х импульсов, поступающих от высокочастотного генератора 1. Световой импульс, отразившись от отражателя 5, поступает на преобразователь 6, который через переключатель 7 останавливает счётчик 8. Число импульсов, сосчитанное счётчиком 8, пропорционально прошедшему времени и, следовательно, измеряемому расстоянию. Для повышения точности измерения выполняются многократно и результаты осредняются процессором 9. Измеренное расстояние высвечивается на табло.
Измеренное расстояние исправляют поправками за атмосферное давление, температуру и влажность воздуха, влияющие на скорость света. Для получения горизонтального проложения вводят поправку за наклон.
Конструктивно приемопередатчик представляет собой отдельный прибор, насадку на теодолит или блок, входящий в состав электронного тахеометра.
По их назначению принято различать светодальномеры для построения государственных геодезических сетей, светодальномеры для прикладной геодезии и маркшейдерии и светодальномеры для топографических съёмок.
Точность топографических светодальномеров 2 – 3 см, а применяемых в прикладной геодезии 2 – 3 мм.
Отражатели бывают призменные и плёночные. Основным элементом призменного отражателя (рис. 8.8 б) является стеклянная трипельпризма отражающая световые лучи в тех направлениях, откуда они пришли. Для увеличения дальности измерений изготавливают многопризменные отражатели.
Плёночный отражатель представляет собой отражающую свет пластиковую плёнку размером 1´1 см и больше, на которую нанесены штрихи (например, вертикальный и горизонтальный). Дальность измерений с пленочными отражателями меньше, чем с призменным. Но зато пленочный отражатель можно закрепить там, где установить призменный отражатель невозможно, например – приклеить в нужном месте на сооружение. Кроме того, пленочные отражатели гораздо дешевле призменных. При выполнении угловых измерений центр штрихов на отражателе служит визирной целью.
Существуют светодальномеры, использующие диффузное отражение сигнала от предметов и не требующие отражателя. Таким дальномером является "лазерная рулетка" Disto фирмы Leica (Швейцария). Прибор используют без штатива, с руки. Световой луч наводят на нужные объекты и на шкале читают расстояния до 200 м с точностью 1,5 мм.
Электронные тахеометры. Электронным тахеометром (рис. 8.8) называется прибор, объединяющий в себе светодальномер, электронный теодолит и микро-ЭВМ. Светодальномер прибора измеряет расстояние до отражателя. Датчики горизонтального и вертикального кругов электронного теодолита выдают отсчеты по кругам. Отсчеты расстояния и углов передаются на индикацию и регистрацию. Микро-ЭВМ обеспечивает возможность решения целого ряда стандартных геодезических задач, для чего прибор снабжен набором необходимых прикладных программ. Полученная в результате измерений и вычислений информация высвечивается на цифровом табло, а также регистрируется во внутренней памяти прибора и на флэш-картах для последующего ввода в компьютер для дальнейшей обработки.
Электронный тахеометр имеет, как правило, две панели управления, расположенные с обеих сторон прибора. На панели управления расположены дисплей и клавиатура для управления процессом измерений и ввода информации вручную. Ввод информации и управление возможны и с дистанционного пульта управления (контроллера). Тахеометр может иметь световой указатель створа, облегчающий установку вехи с отражателем на линию, по которой направлена труба прибора.
Рис. 8.8. Электронный тахеометр: а) – основной прибор; б) - однопризменный отражатель: 1 – уровень; 2 – визирная марка; 3 – призма; 4, 5 – закрепительные винты; 6 - штанга.
Программное обеспечение электронных тахеометров поддерживает решение достаточно широкого круга задач. Обычно бывает предусмотрен ввод и сохранение данных о станции: ее координат, номера точки, высоты прибора, имени оператора, даты, времени, сведений о погоде (ветре, температуре, давлении). По результатам измерений выполняется вычисление горизонтальных и вертикальных углов, дирекционных углов линий, горизонтальных проложений, превышений, высот точек, где установлен отражатель, приращений координат, плоских и пространственных координат наблюдаемых точек. Предусмотрена возможность вычисления координат по результатам засечек, вычисления расстояния до недоступной для установки отражателя точки и координат недоступной точки, определения высоты недоступного объекта. Для обеспечения разбивочных работ служат программы вычисления угла и расстояния для выноса точки с заданными координатами. При решении задач учитывается рефракция световых лучей в атмосфере.
В настоящее время на рынке имеется широкий выбор электронных тахеометров, выпускаемых разными фирмами, в числе которых Уральский оптико-механический завод (Россия), Sokkia (Япония), Trimble (США), Leica (Швейцария) и др. Характеристики приборов разных марок различаются. Средние квадратические погрешности измерения углов тахеометров лежат в пределах от 1² до 6². Максимальные дальности измерения расстояний на однопризменный отражатель различаются от 1600 до 5000 м. При этом, точность измерений в среднем характеризуется ошибкой 2 мм + 2´10-6 D, где D – расстояние. Многие из электронных тахеометров позволяют измерять расстояния без отражателя. Дальность таких измерений меняется в разных приборах в пределах 70 – 350 м.
Использование электронных тахеометров значительно повышает производительность труда, упрощает и сокращает время на обработку результатов измерений, исключает такие ошибки исполнителя, которые имеют место при визуальном взятии отсчетов, при записи результатов измерений в журналы, в вычислениях. При работе с электронным тахеометром отпадает необходимость иметь калькулятор для выполнения полевых вычислений.
9. НИВЕЛИРОВАНИЕ
Методы нивелирования
Нивелированием называется измерение превышений с целью определения высот точек. Путем нивелирования значения высот передают от исходных точек с известными высотами на точки, высоты которых надо определить.
В зависимости от применяемых приборов и методов различают следующие виды нивелирования.
Геометрическое нивелирование - метод определения превышений путем взятия отсчетов по вертикальным рейкам при горизонтальном луче визирования. Это - основной метод нивелирования. Методом геометрического нивелирования создана государственная нивелирная сеть, создаются инженерно-геодезические высотные сети различного назначения.
Тригонометрическое нивелирование - метод определения превышения путем измерения вертикального угла и расстояния. Метод используют при создании высотного обоснования топографических съемок, а также при определении превышений и передаче высот на строительных площадках.
Барометрическое нивелирование основано на зависимости между высотой и атмосферным давлением. Для определения превышений измеряют атмосферное давление и температуру в точке с известной высотой и в точках, высоты которых определяют. По разностям давлений вычисляют превышения. Метод применяют при работах в труднодоступной местности, им пользуются геологи, геофизики. Точность измерений этим методом невысокая: на равнинной местности - 0.5 м, в горной - 1.5 м.
Гидростатическое нивелирование основано на свойстве жидкости в сообщающихся сосудах устанавливаться на одном уровне. Простейший гидростатический нивелир представляет собой два сосуда с делениями, соединенные шлангом. Систему заполняют дистиллированной водой. Точность метода очень высокая (0,1 мм), поэтому он применяется при монтаже и выверке конструкций по высоте, особенно при работе в стесненных условиях, при передаче отметок через водные преграды, для наблюдений за деформациями сооружений (плотин, мостов, ускорителей частиц и пр.).
Определение превышений и высот точек с помощью спутниковых измерений. Автономное определение высот точек аппаратурой ГЛОНАСС и GPS выполняется с точностью нескольких метров, а определение превышений между точками - с точностью 10 - 15 мм.
Дата: 2018-12-28, просмотров: 511.