Химию принято подразделять на пять разделов: неорганическая, органическая, физическая, аналитическая и химия высокомолекулярных соединений.
Основными задачами неорганической химии являются: изучение строения соединений, установление связи строения со свойствами и реакционной способностью. Также разрабатываются методы синтеза и глубокой очистки веществ. Большое внимание уделяется кинетике и механизму неорганических реакций, их каталитическому ускорению и замедлению. Для синтезов все чаще применяют методы физического воздействия: сверхвысокие температуры и давления, ионизирующее излучение, ультразвук, магнитные поля. Многие процессы проходят в условиях горения или низкотемпературной плазмы. Химические реакции часто сочетают с получением волокнистых, слоистых и монокристаллических материалов, с изготовлением электронных схем.
Неорганические соединения применяются как конструкционные материалы для всех отраслей промышленности, включая космическую технику, как удобрение и кормовые добавки, ядерное и ракетное топливо, фармацевтические материалы.
Органическая химия — наиболее крупный раздел химической науки. Если число известных неорганических веществ исчисляется тысячами, то органических веществ известно несколько миллионов. Общепризнано огромное значение химии полимеров. Так, еще в 1910 году СВ. Лебедев разработал промышленный способ получения бутадиена, а из него каучука.
В 1936 г. У. Карозерс синтезирует «найден», открыв новый тип синтетических полимеров — полиамиды. В 1938 г. Р. Планкет случайно открывает тефлон, создавший эпоху синтеза фторполимеров с уникальной термостабильностью, создаются «вечные» смазочные масла (пластмассы и эластомеры), широко используемые космической и реактивной техникой, химической и электротехнической промышленностью. Благодаря этим и многим другим открытиям из органической химии выросла химия высокомолекулярных соединений (или полимеров).
Начавшиеся в 30-40-е гг. широкие исследования фосфорорганических соединений (А.Е. Арбузов) привели к открытию новых типов физиологически активных соединений — лекарственных препаратов, отравляющих веществ, средств защиты растений и др.
Химия красителей практически дала начало химической индустрии. Например, химия ароматических и гетероциклических соединений создала первую отрасль химической промышленности, продукция которой ныне превосходит 1 млрд. тонн, и породила новые отрасли — производство душистых и лекарственных веществ.
Проникновение органической химии в смежные области - биохимию, биологию, медицину, сельское хозяйство - привело к изучению свойств, установлению структуры и синтезу витаминов, белков, нуклеиновых кислот, антибиотиков, новых средств ускорения роста растений и средств борьбы с вредителями.
Ощутимые результаты дает применение математического моделирования. Если нахождение какого-либо фармацевтического препарата или инсектицида требовало синтеза 10— 20 тыс. веществ, то с помощью математического моделирования выбор делается, лишь в результате синтеза нескольких десятков соединений.
Роль органической химии в биохимии трудно переоценить. Так, в 1963 г. В. Виньо синтезировал инсулин, также были синтезированы окситоцин (пептидный гормон), вазопрессин (гормон обладает антидиуретическим действием), брадикикин (обладает сосудорасширяющим действием). Разработаны полуавтоматические методы синтеза полипептидов (Р. Мерифилд, 1962).
Вершиной достижений органической химии в генной инженерии явился первый синтез активного гена (X. Корана, 1976). В 1977 г. синтезирован ген, кодирующий синтез человеческого инсулина, а в 78-м - ген соматостатина (способен угнетать секрецию инсулина, пептидный гормон).
Физическая химия объясняет химические явления и устанавливает их общие закономерности. Физическая химия последних десятилетий характеризуется следующими чертами: в результате развития квантовой химии (использует идеи и методы квантовой физики для объяснения химических явлений) многие проблемы химического строения веществ и механизма реакций решаются на основании теоретических расчетов; наряду с этим широко используются физические методы исследования — рентгеноструктурный анализ, дифракция электронов, спектроскопия, методы, основанные на применении изотопов и др.
Аналитическая химия рассматривает принципы и методы изучения химического состава вещества. Включает количественный и качественный анализ. Современные методы аналитической химии связаны с необходимостью получения полупроводниковых и других материалов высокой частоты. Для решения этих задач были разработаны чувствительные методы: активационный анализ, химико-спектральный анализ и др.
Современная химия предстает перед нами как исключительно многогранная и разветвленная система знаний, для которой характерно интенсивное развитие. Важнейшим стратегическим ориентиром этого процесса является все более тесный синтез химии как науки и химии как технологии промышленного производства.
Дата: 2019-02-02, просмотров: 422.