Генная инженерия и биотехнология
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Результаты исследований молекулярной генетики и молекулярной биологии являются иллюстрацией лидирующего состояния биологии в современном естествознании. На их базе возникли новые научные направления, такие как генная инженерия и биотехнология.

Генетическая инженерия — это система экспериментальных приемов, позволяющих конструировать искусственные геческие структуры в виде гибридных молекул ДНК. Суть генетической инженерии сводится к переносу в организм чужеро­дных генов, которые могут сообщать им полезные свойства. Геном является определенный участок молекулы ДНК, который хранит и передает наследственную информацию. Молекулы ДНК представляют собой длинные полимерные молекулы - полинуклеотиды, состоящие из мономерных звеньев. Элементарными частицами генетического материала являются мономерные звенья полимерной молекулы ДНК. Гены содержат в себе такую информацию, код или своего рода программу, по указанию которой происходит синтез белков в клетках данного организма. На линейной молекуле ДНК отдельные гены разделены регуляторными участками, и они не могут перекрываться. Молекулу ДНК можно разбить на непрерывные участки (гены), на каждом из которых записана информация о последовательности аминокислот одного белка. Если найти методы, позволяющие резать ДНК на точно необходимые куски, отделять разные куски друг от друга и затем их сшивать по усмотрению экспериментатора и переносить их в клетку другого организма, то можно заставить эту клетку синтезировать не свойственный ему (т. е. чужой) белок.

Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде, гибридных молекул ДНК, можно получить измененный организм. Синтез нужных белков, гормонов, вакцин и других необходимых для медицины и сельского хозяйства соединений методами молекулярной биологии и есть основная задача генной инженерии. Сложной задачей здесь является поиск методов резки молекулы ДНК с точностью до миллиардных долей метра с тем, чтобы получить все одинаковые молекулы в заданном образце строго в одних и тех же местах. После долгих исследований ученые установили, что в роли такого высокоточного скальпеля могут быть применены ферменты рестриктазы. Они узнают самые разные последовательности нуклеотидов и разрезают их в нужном месте. Полученные куски затем сшивают с помощью другого фермента, называемого ДНК-лигазой, способного залечивать разрывы в цепи ДНК. Таким путем, искусственно можно получить какие угодно комбинации генов, которые в естественных условиях нельзя реализовать из-за существующих барьеров на межвидовое скрещивание.

Полученная путем перетасовки генов гибридная молекула ДНК должна размножаться в составе живой клетки и менять ее генетические свойства. В этом особая роль принадлежит плазмидам. Оказывается, в клетках бактерий, дрожжей и высших организмов кроме основных молекул ДНК, не переходящих из одной клетки в другую, присутствуют еще и маленькие молекулы ДНК-плазмиды, которыми клетки легко обмениваются. Если из бактерий извлечь плазмиды и встроить в них фрагменты чужой молекулы ДНК, а затем залечить раны и смешать полученные гибридные плазмиды с бактериальными клетками, то такие гибридные плазмиды окажутся биологически активными и будут размножаться. Далее в результате размножения гибридных плазмид с бактерией-хозяйкой удается многократно умножить (тиражировать) встроенный чужеродный фрагмент молекулы ДНК. Этот прием генной инженерии получил название клонирования. Метод клонирования с помощью плазмид дает молекулярной биологии уникальную возможность перетасовки генов бактерий, вирусов, дрожжей и высших организмов — человека и животных.

Еще несколько лет назад ученые задавали вопрос, можно ли создать сорта, сбалансированные по составу аминокислот, устойчивые к холоду, засухе, не поражаемые вредителями. Сегодня можно с уверенностью утверждать, что такие трансгенные растения уже вышли в поле. Областей применения трансгенных растений довольно много. На уровне лабораторных экспериментов ведутся работы по получению растений, устойчивых к холоду, тяжелым металлам, повышенному содержанию солей и др. Трансгенные растения, устойчивые к гербицидам (химическим соединениям, которые используют для борьбы с сорняками), к вирусам, растения с повышенным содержанием масел и незаменимых аминокислот уже выращивают на миллионах гектаров. Не менее интересен и другой аспект работ — получены трансгенные растения с измененными декоративными свойствами. Поскольку основные трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, есть все основания ожидать, что площадь под генно-инженерными растениями в будущем увеличится.

Среди последних достижений инженерной, или конструктивной, биологии следует упомянуть успешное клонирование млекопитающих (овцы, свиньи, коровы), создание первых искусственных хромосом человека, создание трансгенных мышей.

Если в плазму встроить ген (фрагмент ДНК) человека, то такая плазмида внутри бактерии или дрожжей начинает вырабатывать белок, отвечающий человеческому гену. Разработка технологии, заставляющей бактериальные или дрожжевые клетки синтезировать в больших количествах необходимые человеку для различных целей белки, положило начало новой биотехнологической эре.

Услугами генной инженерии особенно успешно пользуются фармацевты, для которых этот метод дает сравнительно дешевые, жизненно необходимые гормоны, такие как инсулин, интерферон, гормоны роста и другие, имеющие белковую природу. По заказу фармацевтов генными инженерами налажено производство человеческого гормона инсулина ( вместо ранее применяемого животного инсулина), играющего важную роль в борьбе с сахарным диабетом. Методом генной инженерии получают также достаточно дешевый и чистый человеческий интерферон — белок, обладающий универсальным антивирусным действием, антиген вируса гепатита В.

Другими важнейшими областями, в которых успешно применяются достижения генной инженерии, являются медицина и сельское хозяйство. На наших глазах современная биология превратилась в науку, которая дала начало технологиям, преобразившим производство. Биотехнология стала реальной производительной силой. Питание и медицинское обслуживание возрастающего быстрыми темпами население Земли представляют собой наиболее важные проблемы, стоящие перед человечеством, и решать их, скорее всего, придется методами биотехнологии.

Производство и применение вакцин против вирусных заболеваний позволили медикам ликвидировать полностью эпидемии чумы и оспы, от которых раньше умирали миллионы людей. Метод генной инженерии, в отличие от других методов, позволяет получить абсолютно безвредную (не содержащую инфекционного начала) вакцину. Ведутся также работы по производству вакцин от гриппа, гепатита и других вирусных заболеваний человека.

В настоящее время для производства интерферона и гормона роста в качестве источника плазмид вместо бактерий широко применяются также дрожжи, которые на эволюционной лестнице стоят где-то между бактериями и высшими организмами. Еще одной задачей, успешно решаемой в настоящее время биотехнологией, является производство белка, содержащего незаменимую аминокислоту лизин и используемого в качестве полноценных кормовых добавок для животных.

В биотехнологии применяются не только методы генной инженерии, но и методы клеточной инженерии. Суть метода клеточной инженерии сводится к следующему. Из организма искусственно выделяют клетки, которые затем размножают в специально подобранных питательных средах. Полученные таким путем клеточные культуры используются для производства ценных лекарственных веществ и для гибридизации клеток, которые невозможно воспроизвести обычным половым путем. Методом гибридизации соматических клеток получены новые формы культурных растений (томаты, картофель). Гибридизация же животных клеток (например, раковых клеток и клеток крови — лимфоцитов) применяется для выработки ценных медицинских препаратов.



Дата: 2019-02-02, просмотров: 407.