Панорама современного естествознания
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Панорама современного естествознания.

 

Введение

 

В XX в. естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

Мощным стимулятором для развития науки и техники стали мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начали выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Существенно расширилась сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.

Наука в XX столетии перестала быть частным делом, каковой она была в XVIII—XIX вв., когда ее развивали любознательные самоучки: адвокаты, священники, медики, ремесленники и т. д. Наука становится профессией огромного числа людей. Современные исследования показывают, что развитие науки может быть выражено экспоненциальным законом. Объем научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и объема научной информации, а также числа людей, занятых в науке. В результате — феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.



ФИЗИКА МИКРОМИРА И МЕГАМИРА

Атомная физика

 

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX века ученые считали, что:

1) химические атомы каждого элемента неизменны, и существует столько сортов атомов, сколько известно химических элементов (в то время — примерно 70);

2) атомы данного элемента одинаковы;

3) атомы имеют вес, причем различие атомов основано на различии их веса;

4) взаимный переход атомов данного элемента в атомы другого элемента невозможен.

В конце XIX — начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи. Открытие электрона (1897 г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становит­ся важнейшей задачей физики XX в.

После открытия электрона, протона, фотона и, наконец, в 1932 г. нейтрона, было установлено существование большого числа новых элементарных частиц. В том числе: позитрон, (античастица электрона); мезоны — нестабильные микрочастицы; различного рода гипероны — нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10 -22— 10 -24с); нейтрино — стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино — античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

В характеристике элементарных частиц существует еще одно важное представление — взаимодействие.

Различают четыре вида взаимодействия.

Сильное взаимодействие (короткодействующее, радиус действия около (10 -13 см) связывает между собой нуклоны (протоны инейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаимодействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.

Слабое взаимодействие (короткодействующее, радиус действия меньше 10 -15 см), в котором участвуют все элементарные частицы, обусловливает взаимодействие нейтрино с веществом.

Гравитационное взаимодействие - самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.

Элементарные частицы в настоящее время обычно разделяют на следующие классы:

1. Фотоны - кванты электромагнитного поля, частицы снулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.

2. Лептоны (от греч. leptos - легкий), к числу которыхотносятся электроны, нейтрино; все они не обладают силь­ным взаимодействием, но учасвуют в слабом взаимодействии,а имеющие электрический заряд — также и в электромагнитном взаимодействии.

3. Мезоны - сильно взаимодействующие нестабильныечастицы.

4. Барионы (от греч. berys - тяжелый), в состав которыхвходят нуклоны (нестабильные частицы с массами, большими массы нейтрона),гипероны, многие из резонансов.

Сначала, особенно когда число известных элементарных частиц ограничивалось электроном, нейтроном и протоном, господствовала точка зрения, что атом состоит из этих элементарных «кирпичиков». А дальнейшая задача в исследовании структуры вещества заключается в том, чтобы разыс­кивать новые, еще не известные «кирпичики», из которых состоит атом, и в определении того, не являются ли эти «кирпичики» (или некоторые из них) сами сложными частицами, построенными из еще более тонких «кирпичиков».

Однако действительная картина строения вещества оказалась еще более сложной, чем можно было предполагать. Оказалось, что элементарные частицы могут претерпевать взаимные превращения, в результате которых некоторые из них исчезают, а некоторые появляются. Нестабильные микрочастицы распадаются на другие, более стабильные, но это вовсе не значит, что первые состоят из вторых. Поэтому в настоящее время под элементарными частицами понимают такие «кирпичики» Вселенной, из которых можно построить все, что нам известно в природе.

Приблизительно в 1963-1964 гг. появилась гипотеза о существовании кварков - частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не характерно для других микрочастиц, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.

Основные положения современной атомистики могут быть сформулированы следующим образом:

1.    Атом является сложной материальной структурой, представляет собой мельчайшую частицу химического элемента.

2.    У каждого элемента существуют разновидности атомов(содержащиеся в природных объектах или искусственно синтезированы).

3.    Атомы одного элемента могут превращаться в атомыдругого; эти процессы осуществляются либо самопроизвольно (естественные радиоактивные превращения),либо искусственным путем (посредством различныхядерных реакций).

Таким образом, физика XX в. давала все более глубокое обоснование идеи развития.

 

Молекулярная биология

 

Прогресс в области изучения макромолекул до второй половины нашего века был сравнительно медленным, но благодаря технике физических методов анализа, скорость его резко возросла.

У. Астбери ввел в науку термин «молекулярная биология» и провел основополагающие исследования белков и ДНК. Хотя в 40-е г. почти повсеместно господствовало мнение, что гены представляют собой особый тип белковых молекул, в 1944 г. О. Эвери, К. Маклеод и М. Маккарти показали, что генетические функции в клетке выполняет не белок, а ДНК. Установление генетической роли нуклеиновых кислот имело решающее значение для дальнейшего развития молекулярной биологии, причем было показано, что эта роль принадлежит не только ДНК, но и РНК (рибонуклеи­новой кислоте).

Расшифровку молекулы ДНК произвели в 1953 г. Ф. Крик (Англия) и Д. Уотсон (США). Уотсону и Крику удалось построить модель молекулы ДНК, напоминающую двойную спираль.

Наряду с изучением нуклеиновых кислот и процессом синтеза белка в молекулярной биологии большое значение с самого начала имели исследования структуры и свойств самих белков. Параллельно с расшифровкой аминокислотного состава белков проводились исследования их пространственной структуры. Среди важнейших достижений этого направления следует назвать теорию спирали, разработанную в 1951 г. Э. Полингом и Р. Кори. Согласно этой теории, полипептидная цепь белка не является плоской, а свернута в спираль, характеристики которой были также определены.

Несмотря на молодость молекулярной биологии, успехи, достигнутые ею в этой области, ошеломляющи. За сравнительно короткий срок были установлены природа гена и основные принципы его организации, воспроизведения и функционирования. Полностью расшифрован генетический код, выявлены и исследованы механизмы и главные пути образования белка в клетке. Полностью определена первичная структура многих транспортных РНК. Установлены основные принципы организации разных субклеточных частиц, многих ви­русов, и разгаданы пути их биогенеза в клетке.

Другое направление молекулярной генетики — исследование мутации генов. Современный уровень знаний позволяет не только понять эти тонкие процессы, но и использовать их в своих целях. Разрабатываются методы генной инженерии, позволяющие внедрить в клетку желаемую генетическую информацию. В 70-е гг. появились методы выделения в чистом виде фрагментов ДНК с помощью электрофореза.

В 1981 г. процесс выделения генов и получения из них различных цепей был автоматизирован. Генная инженерия в сочетании с микроэлектроникой предвещают возможности управлять живой материей почти так же, как неживой.

В последнее время в средствах массовой информации активно обсуждаются опыты по клонированию и связанные с этим нравственные, правовые и религиозные проблемы. Еще в 1943 году журнал «Сайенс» сообщил об успешном оплодотворении яйцеклетки в «пробирке». Далее события развивались следующим образом.

1973 г. — профессор Л. Шетлз из Колумбийского университета в Нью-Йорке заявил, что он готов произвести на свет первого «бэби из пробирки», после чего последовали катего­рические запреты Ватикана и пресвитерианской церкви США.

1978 г. — рождение в Англии Луизы Браун, первого ребенка «из пробирки».

1997 г. - 27 февраля «Нейчур» поместил на своей обложке — на фоне микрофотографии яйцеклетки — знаменитую овечку Долли, родившуюся в институте Рослин в Эдинбурге.

1997 г. — в самом конце декабря журнал «Сайенс» сообщил о рождении шести овец, полученных по рослинскому методу. Три из них, в том числе и овечка Долли, несли человеческий ген «фактора IX», или кровоостанавливающего белка, который необходим людям, страдающим гемофилией, то есть несвертываемостью крови.

1997 г. — чикагский физик Сиди объявляет о создании лаборатории по клонированию людей: он утверждает, что отбоя от клиентов у него не будет.

1998 г., начало марта — французские ученые объявили о рождении клонированной телочки.

Все это открывает уникальные перспективы для человечества.

Клонирование органов и тканей — это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т. д.).

Самый наглядный эффект клонирования — дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире страдают, будучи обреченными, оставаться без потомков.

 

Расшифровка генома человека

 

Первоначально (в 1988 г.) средства на изучение генома человека выделило министерство энергетики США, и одним из руководителей программы «Геном человека» стал профессор Чарлз Кэнтор.

В 1990 г. Нобелевский лауреат Джеймс Уотсон начал лоббирование конгресса США, и вскоре конгресс распорядился выделить сразу сотни миллионов долларов на изучение генома человека. Эти средства были добавлены к бюджету министерства здравоохранения, оттуда они перетекли в ведение дирекции сети институтов, объединенных под общим названием — Национальные институты здоровья (NationalInstitutesofHealth, сокращенно NIH). В составе NIH появился новый институт — Национальный институт исследования генома человека (NHGRI, директор Фрэнсис Коллинз).

 

Описание генома человека ученым удалось получить значительно раньше планировавшихся сроков (2005—2010 гг.). Уже в канун нового, XXI в. достигнуты сенсационные результаты в деле реализации указанного проекта. Оказалось, что в геноме человека — от 30 до 40 тысяч генов (вместо предполагавшихся ранее 80—100 тысяч). Это не намного больше, чем у червяка (19 тысяч генов) или мухи-дрозофилы (13,5 тысячи).

Расшифровка генома человека дала огромную, качественно новую научную информацию для фармацевтической промышленности. Вместе с тем оказалось, что использовать это научное богатство фармацевтической индустрии сегодня не по силам. Нужны новые технологии, которые появятся, предположительно в ближайшие 10-15 лет. Именно тогда станут реальностью лекарства, поступающие непосредственно к больному органу, минуя все побочные эффекты. Выйдет на качественно новый уровень трансплантология, получат развитие клеточная и генная терапия, радикально изменится медицинская диагностика и т. д.



Выводы

 

Научные исследования физических, химических, биологических явлений, проводившиеся в XXв., существенно расширили, углубили прежние представления о структуре и свойствах материи.

Если на рубеже XIX и XXвв. была известна лишь одна элементарная частица — электрон, то на рубеже XX и XXI вв. количество известных элементарных частиц исчисляется сотнями. Во второй половине XXв. было выяснено, что элементарные частицы, образующие ядра атомов, сами обладают внутренней структурой и состоят из «еще более элементарных» частиц — кварков.

Наряду с успехами в исследовании микромира современная наука имеет значительные достижения и в познании мегамира. В XVIII—XIX вв. и даже в первой половине XXв. господствовала теория стационарной Вселенной, которая представлялась статичной, не изменяющейся в пространстве. Такое понимание во второй половине XXв. было отброшено и заменено теорией расширяющейся Вселенной.

Современная астрофизика внесла много нового в понимание эволюции звезд, открыла совершенно новые, неизвестные ранее космические объекты (пульсары, квазары).

Крупнейшее достижение науки начала XXв. — создание теории относительности — явилось естественнонаучным подтверждением важнейшего положения диалектико-материалистической картины мира о единстве материи, движения, пространства и времени. Творцу теории относительности удалось показать не просто единство, но зависимость свойств пространства и времени от движущейся материи и друг от друга.

Существенно расширились в XX столетии представления и о структурных уровнях органической природы, которые включают:

· молекулярный уровень жизни,

· клеточный уровень (микроорганизмов, тканей и органов),

· уровни целого живого организма,

· сообществ организмов, биологических видов, биогеоценозов

·  и, нако­нец, биосферы в целом, т.е. области распространения жизни на Земле.

Если важнейшими доказательствами единства органического мира в XIXв. стали открытие клеточного строения организмов и эволюционная теория Дарвина, то в XXв. такими доказательствами явились открытия в области молекулярных основ наследственности в живой природе.



Тейяр де Шарден

Рассмотрение явлений живой природы по уровням биологических структур даст возможность изучения возникновения и эволюции живых систем на Земле от простейших и менее организованных систем к более сложным и высокоорганизованным. Первые классификации растений, наиболее известной из которой была система Карла Линнея, а также классификация животных Жоржа Бюффона носили в значительной мере искусственный характер, поскольку не учитывали происхождения и развития живых организмов. Тем не менее, они способствовали объединению всего известного биологического знания, его анализу и исследованию причин и факторов происхождения и эволюции живых систем. Без такого исследования невозможно было бы,во-первых, перейти на новый уровень познания, когда объектами изучения биологов стали живые структуры сначала на клеточном, а затем на молекулярном уровне. Во-вторых, обобщение и систематизация знаний об отдельных видах и родах растений и животных требовали перехода от искусственных классификаций к естественным, где основой должен стать принцип генезиса, происхождения новых видов, а следовательно, разработана теория эволюции. В-третьих, именно описательная, эмпирическая биология послужила тем фундаментом, на основе которого сформировался целостный взгляд на многообразный, но в то же время единый мир живых систем.

Уровни организации живого – объекты изучения биологии, экологии и физической географии – показаны на рисунке 2.


Экология

Биология   Аутэкология Синэкология Физическая география

Род и другие таксоны
                       

 

Рис.2. Уровни организации живого

 

Представления о структурных уровнях организации живых систем сформировалось под влиянием открытия клеточной теории строения живых тел. В середине прошлого века клетка рассматривалась как элементарная единица живой материи, наподобие атома неорганических тел. Проблема строения живого, изучаемого молекулярной биологией, coвершила научную революцию с середины нашего столетия. Во второй половине XX в. были выяснены вещественный состав, структура клетки и процессы, происходящие в ней.

Каждая клетка содержит в середине плотное образование, названное ядром, которое плавает в "полужидкой" цитоплазме. Все они вместе заключены в клеточную мембрану. Клетка нужна для аппарата воспроизводства, который находится в ее ядре. Без клетки генетический аппарат не мог бы существовать. Основное вещество клетки — белки, молекулы которых обычно содержат несколько сот аминокислот. У всех видов имеются особые белки, определяемые генетическим аппаратом.

Попадающие в организм белки расщепляются на аминокислоты, которые затем используются им для построения собственных белков. Нуклеиновые кислоты создают ферменты, управляющие реакциями.

Дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то, специфическое, что отличает живое от неживого. Наиболее важным открытием на этом пути было выделение из состава ядра клетки богатого фосфором вещества, обладающего свойствами кислоты и названного впоследствии нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась Д-дезоксирибоза, а в другом Р-рибоза . Соответственно этому первый тип кислот стали называть дезоксири-бонуклеиновыми кислотами, или сокращенно, ДНК, а второй тип -рибонуклеиновыми, или кратко РНК кислотами.

Роль ДНК в хранении и передаче наследственности была выяснена после того, как в 1944 г. американским микробиологам удалось доказать, что выделенная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию. В 1953 г. Джеймсом Уотсоном и Френсисом Криком была предложена и экспериментально подтверждена гипотеза о строении молекулы ДНК как материального носителя информации. В 1960-е гг. французскими учеными Франсуа Жакобом и Жаком Моно была решена одна из важнейших проблем генной активности, раскрывающая фундаментальную особенность функционирования живой природы на молекулярном уровне. Они доказали, что по своей функциональной активности все гены разделяются на "регуляторные", кодирующие структуру регуляторного белка, и "структурные гены", кодирующие синтез ферментов.

Воспроизводство себе подобных и наследование признаков осуществляется с помощью наследственной информации, материальным носителем которой являются молекулы дезоксирибонуклеиновой кислоты (ДНК). ДНК состоит из двух цепей, идущих в противоположных направлениях и закрученных одна вокруг другой наподобие электрических проводов. Напоминает винтовую лестницу. Участок молекулы ДНК, служащий матрицей для синтеза одного белка, называют геном. Гены расположены в хромосомах (части ядер клеток). Было доказано, что основная функция генов состоит в кодировании синтеза белков. Механизм передачи информации от ДНК к морфологическим структурам дал известный физик-теоретик Г.Гамов, указав, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Молекулярный уровень исследования позволил показать, что основным механизмом изменчивости и последующего отбора являются мутации, возникающие на молекулярно-генетическом уровне. Мутация — это частичное изменение структуры гена. Конечный эффект ее — изменение свойств белков, кодируемых мутантными генами. Появившийся в результате мутации признак не исчезает, а накапливается. Мутации вызываются радиацией, химическими соединениями, изменением температуры, наконец, могут быть просто случайным. Действие естественного отбора проявляется на уровне живого, целостного организма.

Поскольку минимальной самостоятельной живой системой можно считать клетку, постольку изучение онтогенетического уровня следует начать именно с клетки. В настоящее время различают три типа онтогенетического уровня организации живых систем, которое представляют собой три линии развития живого мира:

1) прокариоты — клетки, лишенные ядер;

2) эукариоты, появившиеся позднее, клетки, содержащие ядра;

3) архебактерии — клетки которых сходны с одной стороны с прокариотами, с другой — эукариотами. По-видимому, все эти три линии развития исходят из единой первичной минимальной живой системы, которую можно назвать протоклеткой. Структурный подход к анализу первичных живых систем на онтогенетическом уровне нуждается в дополнительном освещении функциональных особенностей их жизнедеятельности и обмена веществ.

Онтогенетический уровень организации относится к отдельным живым организмам — одноклеточным и многоклеточным. В разных организмах число клеток существенно отличается. В соответствии с числом клеток все живые организмы разделяют на пять царств.

Первые живые организмы имели одиночные клетки, затем эволюция жизни усложнила структуру и число клеток. Одноклеточные организмы, имеющие простое строение, называются мономерами (от греч. meros— часть), или бактериями. Одноклеточные организмы с более сложной структурой относят к царству водорослей, или проститов. Среди водорослей есть и простейшие многоклеточные организмы. К многоклеточным относят растения, грибы и животных. Организмы классифицируют в связи с их эволюционным родством, поэтому считается, что многоклеточные имели своими предками проститы, а те произошли от монер. Но три многоклеточных царства произошли от разных проститов. Каждая группа многоклеточных организмов — растений, животных и грибов имеет свой план строения, приспособленный к своему образу жизни, а у каждого вида в процессе эволюции сложилась определенная разновидность этого достаточно гибкого плана. Почти каждый вид состоит из различающихся по строению, но в тоже время родственных групп индивидов. Вид представляет собой не простое собрание индивидуумов, а сложную систему группировок, соподчиненных и тесно связанных друг с другом.

 

Рис.3. Биогеоценоз

 

Известный немецкий биолог Э. Геккель открыл биогенетический закон, согласно которому онтогенез в краткой форме повторяет филогенез, т. е. отдельный организм в своем индивидуальном развитии в сокращенной форме повторяет историю рода.

Популяционный уровень начинается с изучения взаимосвязи и взаимодействия между совокупностями особей одного вида, которые имеют единый генофонд и занимают единую территорию. Такие совокупности, или, скорее, системы живых организмов, составляют определенную популяцию. Очевидно, что популяционный уровень выходит за рамки отдельного организма, и поэтому его называют надорганизменным уровнем организации.

Популяция представляет собой первый надорганизменный уровень организации живых существ, который хотя и тесно связан с их онтогенетическим и молекулярными уровнями, но качественно отличается от них по характеру взаимодействия составляющих элементов, ибо в этом взаимодействии они выступают как целостные общности организмов. По современным представлениям, именно популяции служат элементарными единицами эволюции.

Второй надорганизменный уровень организации живого составляет различные системы популяций, которые называют биоценозами или сообществами. Они являются более обширными объединениями живых существ и в значительно большей мере зависят от небиологических, или абиотических, факторов развития.

Третий надорганизменный уровень организации содержит в качестве элементов разные биоценозы и в еще большей степени характеризуется зависимостью от многочисленных земных и абиотических условий своего существования (географических, климатических, гидрологических,  атмосферных и т. п.). Для его обозначения применяется термин биогеоценоз, или экологическая система — экосистема (рис.3.)

Четвертый надорганизменный уровень организации возникает из объединения самых разнообразных биогеоценозов и теперь называется биосферой.

Для характеристики трофического (пищевого) взаимодействия популяции и биоценозов существенное значение имеет общее правило, согласно которому, чем длиннее и сложнее пищевые связи между организмами и популяциями, тем более жизнеспособной и устойчивой является живая система любого (надорганизменного) уровня. Отсюда становится ясным, что с биологической точки зрения на таком уровне решающее значение приобретает трофический характер взаимодействия между составляющими живую систему элементами.




Выводы

 

1. Среди известных гипотез происхождения жизни наиболее распространены:креационизм,самопроизвольное возникновение,вечное существование,панспермия,биохимический путь.

2. Для научного изучения происхождения жизни необходимы, прежде всего, данные о физико-химических условиях на ранней Земле. Такие данные связаны как с геологической эволюцией планеты, так и с эволюцией химических элементов Солнечной системы и солнечной активностью.

3. Из большого числа химических элементов для жизни необходимы только 16, а водород, углерод, кислород и азот составляют почти 99% живой материи. Уникальными свойствами обладает углерод, и наша жизнь называется углеродной, или органической. Четырехвалентность углерода приводит к огромному числу его соединений, которыми занимается органическая химия. Углерод образует сложные молекулы, представляющие собой кольца и цепи, обеспечивающие разнообразие органических соединений.

4. Аминокислоты — важный для жизни класс органических соединений. В живых организмах они используются для синтеза белков: растения могут синтезировать их из простых веществ, а в животные организмы они должны поступать с пищей, поэтому их называют незаменимыми.Из четырех нуклеотидов построеныидругие крупные молекулы - нуклеиновые кислоты, тоже входящие в состав живой клетки. Нуклеиновые кислоты представляют собой двухцепочные молекулы.

5. Современные научные гипотезы происхождения жизни связаны с образованием в определенных условиях более сложноорганизованных молекул -коагулянтов, гелей коацерватов. У этих коллоидных образований, как считали Опарин и Холдейн, на поверхности могут происходить процессы, напоминающие метаболизм живых организмов. Коацерваты способны делиться на части, увеличиваться в размерах, поглощать более простые молекулы. Гипотеза Опарина—Холдейна проверялась на установке Меллера, где искровой разряд пропускался через смесь метана, аммиака, водорода и воды, что имитировало условия первичной Земли. Были синтезированы простейшие аминокислоты. Живые тела, существующие на Земле,представляют собой открытые, саморегулирующиеся и самопроизводящие системы, построенные из биополимеров — белков и нуклеиновых кислот.



Эмоции и творчество

 

Ничто — ни слова, ни мысли, ни даже поступки наши не выражают так ясно и верно нас самих, как наши чувствования; в них сложен характер не отдельной мысли, не отдельного решения, а всего содержания души нашей.

К. Д. Ушинский.

Деятельность человека по удовлетворению его разнообразных потребностей сопровождается проявлениями активности человекав виде эмоциональных переживаний. Эмоции -особый класс субъективных психологических состояний человека, отражающих в форме непосредственных переживаний процесс и результат практической деятельности, направленной на удовлетворение его актуальных потребностей. Эмоции, утверждал Ч. Дарвин, возникли в процессе эволюции как средство, при помощи которого живые существа устанавливают значимость тех или иных условий для удовлетворения актуальных для них потребностей. Эмоции играют в деятельности людей мобилизационную, интегративно - защитную, коммуникативную роль. Основные эмоциональные состояния, которые испытывает человек, делятся на собственно эмоции, чувства и аффекты. Формой эмоциональных переживаний является удовольствие, получаемое от удовлетворения потребностей, и неудовольствие, связанное с невозможностью это сделать при обострении соответствующей потребности. Чувства — высший продукт культурно-эмоционального развития человека; они обычно возникают в ответ на воздействие отдельных свойств окружающей среды. Они соотносятся с восприятием и оценкой сложных предметов, событий, людей, ситуаций. Проявление сильного и устойчивого положительного чувства к чему-либо или к кому-нибудь называется страстью. Устойчивые чувства умеренной или слабой силы, действующие в течение длительного времени, именуются настроениями. Аффекты — это выраженные эмоциональные состояния, сопровождаемые видимыми изменениями в поведении человека, который их испытывает. Аффект не предшествует поведению, а как бы сдвинут на его конец. Аффекты, как правило, препятствуют нормальнойорганизации поведения, его разумности. Одним из наиболее распространенных в наши дни видов аффектов является стресс. Он представляет собой состояние чрезмерно сильного и длинного психологического напряжения, которое возникает у человека, когда его нервная система получает эмоциональную перегрузку. Стресс дезорганизует деятельность человека, нарушает нормальный ход его поведения.

Эмоция — это реакция всей личности (включая организм) на те ситуации, к которым она не может адаптироваться, она имеет преимущественно функциональное значение. Так, эмоция вызывает нарушение памяти, навыков и вообще замену трудных действий более легкими. Эмоция соответствует такому снижению уровня адаптации, которое наступает,когда мотивация является слишком сильной по сравнению с реальными возможностями субъекта. Эмоция — это страх, гнев, горе, иногда радость, особенно чрезмерная радость. Существует оптимум мотивации, за пределами которого возникает эмоциональное поведение. С усилением мотивации повышается качество исполнения, но до определенного предела:если она слишком велика, исполнение ухудшается. Эмоция возникает часто потому,чтосубъект не может или неумеет дать адекватный ответ на стимуляцию. Конфликты являются глав­ой причиной эмоций тогда, когда субъект не может легко найти решение. Эмоции способны мобилизовать человека, компенсировать недостаточность информации, недостаточность возможностей человека по решению проблемы.

Творчество как процесс создания чего-то нового часто предполагает, что человек может испытывать недостаточность информации, знаний, умений для достижения цели и решения той или иной проблемы, поэтому ему необходимо делать рывок в неизведанное, создать новые знания, умения, новые объекты и произведения. Эмоции, вдохновение, воображение помогают сделать этот "рывок в творчество".Творчество имеет место там, где воображение свободно от оков логики за счет эмоций. Выделяют 4 стадии творческого процесса:подготовка,созревание,вдохновение,проверка найденного решения. Научное творчество и особенно творчество в искусстве опирается на воображение, которое,в очередь, неразрывно связано с эмоциями и чувствами человека. Воображение является психическим процессом, заключающимся в создании новых образцов, представлений, полученных в предшествующем опыте. Видом творческого воображения, связанного с осознанием желаемого будущего, является мечта. Творческое мышление не тождественно интеллекту и имеет следующие отличительные черты:

1) оно оригинально, т.е. оно порождает неожиданные, небанальные, непривычные решения;

2) оно подвижно, т. е. для творческого мышления не составляет труда перейти от одного аспекта проблемы к другому, не ограничиваясь одной единственной точкой зрения;

3) оно пластично, т. е. творческие люди предлагают множество решений в тех случаях, когда обычный человек может найти лишь одно или два.



Вопросы биомедицинской этики

 

Биоэтику, или сложные поведенческие программы, присущие животному миру, следует рассматривать как естественное обоснование человеческой морали. Много признаков, присущих человеку, обусловлено генетически. И только часть человеческих черт обусловлена воспитанием, образованием и другими факторами внешней среды обитания. Поэтому суть эволюции составляет процесс передачи генов от поколения к поколению. Все человеческие действия — это его поведение.

С помощью биоэтики можно ответить на вопрос о происхождении таких важнейших проявлений человеческого разума, как мораль и этика. Этологи — специалисты по поведению животных — открыли у них большой набор интенсивных запретов, необходимых и полезных в общении с сородичами. Все эти врожденные запреты возникают под жестким давлением отбора ради выполнения задачи сохранения вида. К важнейшим из таких запретов относятся:

1) «не убей своего» — первый основополагающий запрет очень многих видов;

2) нельзя нападать неожиданно и сзади, без предупреждения и без проверки;

3) запрещено применять смертельное оружие или убийственный прием в драке со своими;

4) непозволительно бить того, кто принял позу покорности;

5) победа преимущественно бывает на стороне того, кто прав.

Таким образом, одним из важнейших выводов биоэтики является то, что в нашем поведении помимо действий, порожденных разумом, есть действия, мотивированные древними врожденными программами, доставшимися нам от животных предков. Биоэтика включает в себя этические нормы отношения к животным, экологическую этику, этику отношений человека с биогеоценозами и со всей биосферой. Она является формой защиты прав человека, в том числе его права на жизнь, на здоровье, на ответственное и свободное самоопределение своей жизни. Если биоэтику трактовать не как узко медицинскую и биологическую, а как широкую и философски глубокую дисциплину, то ее центральное ядро - отношение к жизни и смерти. Жизнь понимается как самоценность, как высшая ценность. Поэтому возникают проблемы, которые выходят за рамки отношений врача и пациента, а именно отношение к жизни, животным, к биогеоценозам, к биосфере и т. д. Биоэтика как отрасль науки возникла и стала интенсивно развиваться в США и Западной Европе. Дело в том, что научные эксперименты часто выходят за рамки сугубо профессиональной подготовки врача, генного инженера, биолога и приобретают Характер этических проблем, нуждаются в моральной оценке со стороны человеческого общества.

Рассмотрим естественнонаучный и моральный аспекты каждого из этих достижений научно-технического прогресса. В связи с достигнутыми успехами генной инженерии в последнее время учеными предпринимаются серьезные попытки применения клонирования при помощи плазмид, какого угодно участка ДНК многих животных, в том числе и человека. Ученым удалось перетасовать гены, комбинация которых в естественных условиях была невозможна из-за существующих барьеров (запретов биологического характера) на межвидовое скрещивание. По существу в области молекулярной биологии сняли природный запрет, позволили себе нарушить результаты эволюционного развития животного мира. Ведь известно, что ветви на дереве жизни в ходе эволюционного развития живой материи разошлись так сильно и далеко, что сама природа наложила вето на скрещивание разных видов ветвей (видов). Мы знаем, что в природных условиях невозможно скрещивание, например, между собакой и кошкой, как представителями разных видов. Подобные гибриды, если даже иногда образуются в самой природе, оказываются, хотя и жизнеспособными, но бесплодными (например, мул — помесь осла и лошади). А ученые, создавая в пробирке какие угодно комбинации генов, пошли против природы, поставившей запрет на это.

После удачных опытов, подтвердивших, что рекомбинантные молекулы ДНК оказываются вполне биологически активными в среде клетки-хозяйки, в умах самих ученых возникли серьезные сомнения. Ученые задумываются: а что, если гибридные молекулы ДНК окажутся с чудовищными качествами, начнут размножаться с огромной скоростью и последствия таких экспериментов будут непредсказуемыми и гибельными для человечества? Перед генными инженерами встала проблема моральной ответственности перед человеческим обществом за подобные эксперименты. Тревогу забила и общественность, которую пугают возможные отрицательные последствия подобной работы ученых. После каждого очередного сообщения ученых о результатах своих исследований в области генной инженерии (как, например, это произошло с клонированием овец в Англии) в обществе возникают бурные страсти. На какое-то время ученые под нажимом общественного мнения прекращают свою работу, однако тяга научного творчества оказывается сильнее страха и они снова берутся за эксперименты. Подобные ситуации возникали в науке не один раз: вспомним, какие чувства, например, испытывали американские ученые физики-ядерщики перед первым испытанием атомной бомбы. Хотя в случае с генной инженерией степень риска не так велика, как с атомной бомбой, тем не менее, опасения в обществе время от времени возникают.

Успехи клеточной инженерии позволяют ученым в настоящее время сохранить на длительный срок в соответствующей питательной среде соматические и половые (даже оплодотворенные) клетки умерших животных, в том числе человека. Если перенести такую оплодотворенную в пробирке яйцеклетку или же соответствующий ей плод в матку суррогатной матери (этот прием получил название клонирования), то можно осуществить полноценное вынашивание плода без особых физиологических проблем. Но в подобных случаях возникают моральные проблемы: как должен чувствовать с этической точки зрения человек, появившийся на свет не совсем обычным способом, как отнесутся к нему его же сверстники, какие у них будут взаимоотношения, каковы будут их последствия. Нелегко отвечать на все эти вопро­сы. В аналогичных случаях вопросов возникает гораздо больше, чем имеется на них ответов. Многое здесь, по-видимому, будет зависеть от уровня развития данного общества, от господствующей в обществе морали и принятых норм поведения людей, их научных или же религиозных взглядов.

При развитии и размножении соматических клеток в специально подобранных питательных средах появляется возможность получения целого организма из нескольких клеток, так как в них сохраняется набор всех генов взрослого организма. А проблема в том, будет ли полученный таким образом организм полным подобием исходного, или это будет нечто другое. Клеточные культуры применяются для производства лекарственных веществ растений, а каковы будут последствия применения их в животном мире — трудно предусмотреть. Тут, по существу, речь может идти о возрождении, например, умершего человека из его оставшихся соматических (не половых) клеток. А пересадка человеческих органов, взятых у одного человека, другому человеку — пациенту, нуждающемуся в этой операции — это благо или нет? Мы знаем, что врачи считаются представителями самой гуманной на Земле профессии. Они по роду своей деятельности наделены правом, даже можно сказать, обязанностью вмешиваться в святая святых — человеческую жизнь. Пересадка человеческого органа производится врачом из гуманных соображений, во имя блага пациента. Но трансплантируемый орган (если он отдельно не выращивается методом клеточной культуры) извлекается из организма другого человека. Вот тут как раз возникает много вопросов, сомнений и этических проблем. Если для пересадки органа организуется "охота" на людей с применением криминальных методов или же используется профессиональная непорядочность врача, а может быть, и жажда наживы, то, несомненно, это зло и может быть квалифицировано как убийство. Не говоря уже о глубокой аморальности этого явления, его следует квалифицировать как тягчайшее преступление, наказание за которое должен определить суд. В данном случае для пациента оборачивается злом для другого человека, ставшего жертвой пациента.

Если даже изъятие органа у безнадежно больного человека на первый взгляд не покажется столь преступным, то и в этом случае этический аспект проблемы остается открытым. Дело в том, что в настоящее время, как это было им продемонстрировано, границу между жизнью и смертью проводят уже на молекулярном уровне. Поэтому старые подходы, когда конец человеческой жизни определяли по прекращению дыхания и сердцебиения, давно потеряли свою значимость. Сейчас благодаря успехам реаниматологии на длительное время возможно продление существования человека (даже при поражении некоторых жизненно важных органов) путем применения аппаратов искусственного дыхания, искусственной почки, кардиостимуляторов и т. д. Прежде чем извлечь из человеческого организма тот или иной орган для пересадки другому пациенту, необходимо установить факт смерти первого. Сейчас "граница" между жизнью и смертью определяется не деятельностью сердца и легких, а жизнеспособностью мозга. Пока мозг жив, следует считать, что человек жив даже при остановившемся сердце и прекратившемся дыхании, и наоборот, человек мертв, если мозг необратимо погиб, даже если его сердце продолжает биться, а легкие "дышат". Даже смерть самого мозга происходит в несколько стадий: сначала погибает кора мозга, а затем его стволовая часть. За мозговой смертью следует уже смерть внутренних органов, и человек перестает существовать как единый функционирующий организм. Современная медицина в этом случае вынуждена фиксировать конец человеческой жизни, а молекулярная биология оставляет и в этой ситуации шанс и надежду на сохранение некоторых клеток умершего в качестве возможности продолжения, а точнее, возрождения его жизни методами генной и клеточной инженерии. Поэтому определение границы между жизнью и смертью в современных условиях становится очень трудной задачей, поскольку эта граница проходит уже на клеточном уровне.

К кругу биомедицинской этики могут быть причислены и такиезлободневные вопросы, как аборт, проведение рискованных опытов над людьми, испытание на больных новых аппаратов, подвергающих их жизнь опасности, и ряд других. В заключение следует отметить, что биомедицинская этика - это сравнительная молодая область науки, призванная связывать между собой естественнонаучную и гуманитарные культурные традиции. Термин "биоэтика" был введен в 1971 г. американским ученым В. Р. Поттером, и круг рассматриваемых этой молодой наукой проблем в будущем, возможно, еще расширится.



Выводы

 

1. Физиология человека изучает жизнедеятельность здорового человека, функции составных частей его организма: клеток, тканей, органов, систем. Она основана на изучении деятельности кровеносной, лимфатической, дыхательной, пищеварительной, выделительной, нервной систем, обмена веществ и энергии, желез внутренней секреции и др.

2. Здоровье — это состояние полного физического, умственного и социального благосостояния человека. Оно во многом связано с эволюционно-экологическими основами его психофизической деятельности. Здоровье и болезнь — это два качественно различных феномена, которые могут сосуществовать в индивидууме. Свежий воздух, солнечный свет, умеренность, отдых, физические упражнения, вода и правильное питание — необходимое факторы здоровья и долголетия.

3. Работоспособность определяет возможности организма при выполнении работы и поддержании структуры и энегозапасов на заданном уровне. С точки зрения работоспособности, здоровье — это количество резервов в организме, максимальная производительность органов при сохранении качественных пределов их функций.

4. Эмоции — особый класс субъективных психологических состояний, отражающих в форме непосредственных переживаний результаты практической деятельности, направленной на удовлетворение актуальных потребностей. Они возникают лишь тогда, когда осуществление инстинктивных действий, привычных и произвольных форм поведения наталкивается на препятствия, к которым он не может адаптироваться.

5. Творчество — это процесс создания человеком нового, при котором он, создает новые знания, умения, новые объекты и произведения.

 

Панорама современного естествознания.

 

Введение

 

В XX в. естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

Мощным стимулятором для развития науки и техники стали мировые войны, а также экономическое и военное противостояние двух военно-политических блоков, во главе которых стояли СССР и США. Развитые промышленные страны начали выделять большие средства на развитие системы образования, подготовку и воспроизводство научных кадров. Существенно расширилась сеть научно-исследовательских учреждений, финансируемых как государством, так и частными компаниями.

Наука в XX столетии перестала быть частным делом, каковой она была в XVIII—XIX вв., когда ее развивали любознательные самоучки: адвокаты, священники, медики, ремесленники и т. д. Наука становится профессией огромного числа людей. Современные исследования показывают, что развитие науки может быть выражено экспоненциальным законом. Объем научной деятельности удваивается каждые 10-15 лет. Это проявляется в ускорении роста количества научных открытий и объема научной информации, а также числа людей, занятых в науке. В результате — феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.



ФИЗИКА МИКРОМИРА И МЕГАМИРА

Атомная физика

 

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX века ученые считали, что:

1) химические атомы каждого элемента неизменны, и существует столько сортов атомов, сколько известно химических элементов (в то время — примерно 70);

2) атомы данного элемента одинаковы;

3) атомы имеют вес, причем различие атомов основано на различии их веса;

4) взаимный переход атомов данного элемента в атомы другого элемента невозможен.

В конце XIX — начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи. Открытие электрона (1897 г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становит­ся важнейшей задачей физики XX в.

После открытия электрона, протона, фотона и, наконец, в 1932 г. нейтрона, было установлено существование большого числа новых элементарных частиц. В том числе: позитрон, (античастица электрона); мезоны — нестабильные микрочастицы; различного рода гипероны — нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10 -22— 10 -24с); нейтрино — стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино — античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

В характеристике элементарных частиц существует еще одно важное представление — взаимодействие.

Различают четыре вида взаимодействия.

Сильное взаимодействие (короткодействующее, радиус действия около (10 -13 см) связывает между собой нуклоны (протоны инейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаимодействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.

Слабое взаимодействие (короткодействующее, радиус действия меньше 10 -15 см), в котором участвуют все элементарные частицы, обусловливает взаимодействие нейтрино с веществом.

Гравитационное взаимодействие - самое слабое, не учитывается в теории элементарных частиц; распространяется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.

Элементарные частицы в настоящее время обычно разделяют на следующие классы:

1. Фотоны - кванты электромагнитного поля, частицы снулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.

2. Лептоны (от греч. leptos - легкий), к числу которыхотносятся электроны, нейтрино; все они не обладают силь­ным взаимодействием, но учасвуют в слабом взаимодействии,а имеющие электрический заряд — также и в электромагнитном взаимодействии.

3. Мезоны - сильно взаимодействующие нестабильныечастицы.

4. Барионы (от греч. berys - тяжелый), в состав которыхвходят нуклоны (нестабильные частицы с массами, большими массы нейтрона),гипероны, многие из резонансов.

Сначала, особенно когда число известных элементарных частиц ограничивалось электроном, нейтроном и протоном, господствовала точка зрения, что атом состоит из этих элементарных «кирпичиков». А дальнейшая задача в исследовании структуры вещества заключается в том, чтобы разыс­кивать новые, еще не известные «кирпичики», из которых состоит атом, и в определении того, не являются ли эти «кирпичики» (или некоторые из них) сами сложными частицами, построенными из еще более тонких «кирпичиков».

Однако действительная картина строения вещества оказалась еще более сложной, чем можно было предполагать. Оказалось, что элементарные частицы могут претерпевать взаимные превращения, в результате которых некоторые из них исчезают, а некоторые появляются. Нестабильные микрочастицы распадаются на другие, более стабильные, но это вовсе не значит, что первые состоят из вторых. Поэтому в настоящее время под элементарными частицами понимают такие «кирпичики» Вселенной, из которых можно построить все, что нам известно в природе.

Приблизительно в 1963-1964 гг. появилась гипотеза о существовании кварков - частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не характерно для других микрочастиц, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.

Основные положения современной атомистики могут быть сформулированы следующим образом:

1.    Атом является сложной материальной структурой, представляет собой мельчайшую частицу химического элемента.

2.    У каждого элемента существуют разновидности атомов(содержащиеся в природных объектах или искусственно синтезированы).

3.    Атомы одного элемента могут превращаться в атомыдругого; эти процессы осуществляются либо самопроизвольно (естественные радиоактивные превращения),либо искусственным путем (посредством различныхядерных реакций).

Таким образом, физика XX в. давала все более глубокое обоснование идеи развития.

 

Дата: 2019-02-02, просмотров: 407.