Действие внешних факторов на микроорганизмы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

К числу основных физических факторов, воздействующих на микроорганизмы как в естественной среде обитания, так и в условиях лаборатории, относят температуру, свет, электричество, высушивание, различные виды излучения, осмотическое давление и др.

 

Температура. О влиянии температуры на микроорганизмы судят по их способности расти и размножаться в определенных температурных границах. Для каждого вида микроорганизмов определена оптимальная температура развития. В зависимости от пределов этой температуры бактерии разделены на три физиологические группы:

 

 

·   Психрофильные микроорганизмы (психрофилы) – способны расти и размножаться от 00С до 30…350С, а температурный оптимум составляет 15…200С. Среди представителей этой группы обитатели северных морей, почвы, сточных вод.

 

·     Мезофильные бактерии – способны расти и размножаться при температуре от 100С до 40…450С, температурный оптимум – 30…370С. Наиболее обширная группа микроорганизмов, в нее включают большинство сапрофитов и все патогенные микроорганизмы.

 

 

·   Термофильные бактерии – способны расти и размножаться в температурных границах от 350С до 70…750С, температурный оптимум – 50…600С. Микроорганизмы этой группы довольно часто встречаются в природе: почве, воде, теплых минеральных источниках, пищеварительном тракте животных и человека

 

·   Экстремально-термофильные бактерии – способны существовать при температурах от 40 до 930С и выше. Возможность существования при высоких температурах обусловлена особым составом липидных компонентов клеточных мембран, высокой термостабильностью белков, ферментов и клеточных структур.

 

 

Высокие и низкие температуры по-разному влияют на микроорганизмы. При низких температурах клетка переходит в состояние анабиоза, в котором она может существовать длительное время. Так, эшерихии сохраняют жизнеспособность при -1900С до 4 месяцев, возбудитель листериоза при -100С до 3 лет. Низкие температуры приостанавливают гнилостные и бродильные процессы. На этом принципе основано сохранение продуктов в холодильниках.

 

Высокая температура губительно действует на микробы. Чем выше температура, тем меньшее время необходимо для инактивации микроорганизмов. В основе бактерицидного действия высоких температур лежит разрушение ферментов за счет денатурации белков и нарушения осмотического барьера.

 

 

Разные виды микроорганизмов обладают различной устойчивостью к высоким температурам, значительно отличается устойчивость спор и вегетативных клеток. Так большинство вегетативных форм патогенных микроорганизмов гибнут при температуре 80…1000С в течение 1 минуты, а споры возбудителя сибирской язвы выдерживают кипячение более 1 часа.

 

Действие видимого излучения (света).

Видимый (рассеянный свет), имеющий длину волны 300…1000 нм, обладает способность угнетать рост и жизнедеятельность большинства микроорганизмов. В связи с этим культивирование микроорганизмов осуществляют в темноте. Видимый свет положительно влияет только на бактерии, которые используют свет для фотосинтеза.

 

Прямые солнечные лучи действуют на микроорганизмы более активно, чем рассеянный свет. Бактерицидное действие света связано с образованием гидроксильных радикалов и других высокореактивных веществ, разрушающих вещества, входящие в состав клетки. Например, происходит инактивация ферментов.

 

Микроорганизмы-сапрофиты более устойчивы к воздействию света, чем патогенные. Это объясняется тем, что они, чаще подвергаясь действию прямых солнечных лучей, более адаптированы к ним. В связи с этим следует отметить большую гигиеническую роль солнечного света. Именно под воздействием солнечного излучения происходит самоочищение воздуха, верхних слоев почвы и воды.

 

Ультрафиолетовое излучение.

Ультрафиолетовое излучение с длиной волны 295…200 нм является бактерицидно активным, то есть способным губительно действовать на микроорганизмы. Механизм действия ультрафиолетового излучения заключается в его способности частично или полностью подавлять репликацию ДНК и повреждать рибонуклеиновые кислоты (особенно мРНК).

 

Ультрафиолетовое излучение широко применяют для санации воздуха в животноводческих помещениях, в лабораториях, в промышленных цехах, микробиологических боксах. Для дезинфекции воздуха промышленность выпускает различные лампы. В животноводческой практике широко применяют установки ИКУФ-1, как источник ультрафиолетового и инфракрасного излучения.

 

 

Ионизирующее излучение.

Ионизирующее (рентгеновское) излучение представляет собой электромагнитное излучение с длиной волны 0,006…10нм. В зависимости от длины волны различают гамма-излучение, бета-излучение и альфа-излучение. Наиболее активным действие на биологические объекты отличается гамма-излучение, но даже его бактерицидные свойства значительно ниже, чем бактерицидные свойства ультрафиолетового излучения. Гибель бактерий наступает только при облучении их большими дозами от 45000 до 280000 рентген. Отдельные виды способны выживать в воде атомных реакторов, где величина радиоактивного облучения достигает 2…3 млн. рентген. Более того, получены данные, что воздействие небольших доз гамма-излучения на патогенные микроорганизмы, способны усилить их вирулентные свойства.

 

Механизм действия рентгеновского излучения заключается в поражении ядерных структур, в частности нуклеиновых кислот цитоплазмы, что приводит к гибели микробной клетки или изменению ее генетических свойств (мутации).

 

Электричество.

Электрический ток малой и высокой частоты уничтожает микроорганизмы. Особенно сильным бактерицидным действием обладают токи ультравысокой частоты. Они приводят в колебание молекулы всех элементов клетки, вследствие чего происходит быстрое и равномерное нагревание всей массы клетки не зависимо от температуры окружающей среды. Кроме того, установлено, что длительное воздействие токов высокой частоты приводит к электрофорезу некоторых компонентов питательной среды. Образующиеся при этом соединения инактивируют микробную клетку.

 

Ультразвук.

Механизм бактерицидного действия ультразвука (волны с частотой 20 000 Гц) заключается в том, что в цитоплазме микроорганизмов, находящихся в жидкой среде, образуется кавитационная полость, которая заполняется парами жидкости, в пузырьке возникает давление, что приводит к дезинтеграции цитоплазматических структур. Ультразвук используют для стерилизации пищевых продуктов и дезинфекции предметов.

 

Аэроионизация.

Аэроионы, несущие положительный или отрицательный заряд, возникают в воздухе при искусственной или естественной ионизации. Наибольшее влияние на бактерии оказывают отрицательно заряженные ионы, действуя уже в средних концентрациях (5*104 в 1 см3 воздуха). Положительно заряженные ионы обладают менее выраженным бактерицидным действием, они способны задерживать рост и развитие микроорганизмов только в больших концентрациях (106 в 1 см3 воздуха). Сила действия аэроионов зависит от их концентрации, длительности экспозиции и расстояния от источника. Используют аэроионы для обеззараживания воздуха жилых помещений, цехов предприятий, медицинских учреждений.

 

Почти все факторы физического воздействия на микроорганизмы могут быть использованы с целью стерилизации. Стерилизация – уничтожение патогенных и непатогенных микроорганизмов, их вегетативных и споровых форм в каком-либо объекте. Стерилизации подвергают питательные среды, стеклянную посуду, инструменты, перевязочный материал, халаты. Стерилизации также подвергают воздух и предметы в микробиологических боксах.

 

Механизм действия различных методов стерилизации не одинаков, но в основе каждого лежит способность нарушать жизненные процессы микробной клетки (денатурация белков, угнетение функции ферментных систем).

 

Химические вещества могут тормозить, полностью подавлять рост микроорганизмов или вызывать гибель микробной клетки. Эти способности химических веществ учитывают при подборе вещества для проведения дезинфекции.

 

Противомикробные вещества по химическому строению и механизму бактерицидного действия подразделяют на следующие группы: окислители, галогены, соединения металлов, кислоты и щелочи, спирты, краски, производные фенола и альдегиды.

 

Окислители. К этой группе принадлежит перекись водорода, перманганат калия. Эти соединения, выделяя активный атомарный кислород, вызывают цепную реакцию свободно-радикального перекисного окисления липидов, что ведет к деструкции мембран и белков микроорганизмов.

 

Галогены. Представителями этой группы веществ являются хлор, йод и их производные: хлорная известь, хлорамин Б, раствор йода спиртовой, йодинол, йодоформ и др. Их бактерицидное действие связано со способностью активных галогенов замещать водородные атомы в молекулах белков, денатурируя их, а также, выделяя атомарный кислород, соединения галогенов оказывают активное окисляющее действие.

 

Соединения тяжелых металлов. К этой группе относят соли свинца, меди, цинка, серебра, ртути. Антимикробное действие соединений тяжелых металлов обусловлено ослаблением активности ферментов, а также образованием с белками альбуминатов.

 

Кислоты и щелочи. В основе бактерицидного действия кислот и щелочей лежат дегидратация микроорганизмов, изменение рН питательной среды, гидролиз коллоидных систем и образование кислотных и щелочных альбуминатов.

 

Кислоты способны коагулировать белки микробной клетки, изменять концентрацию водородных ионов в растворах. На практике кислоты применяют для уничтожения микробов на объектах окружающей среды, для создания определенного рН в питательных средах, при изготовлении и консервировании пищевых продуктов.

 

Спирты. Антимикробная активность спиртов обусловлена их способностью отнимать воду и свертывать белок. Наиболее широкое применение в качестве бактерицидного средства нашел этиловый спирт (С2Н5ОН). Бактерицидная активность этилового спирта зависит от его концентрации. Способностью инактивировать микробную клетку обладает 20% этиловый спирт, но наиболее эффективно использование 70% растворов. Более высокие концентрации в белковой среде образуют плотные белковые сгустки, внутри которых могут сохраняться живые бактерии.

 

 

Краски. Вещества этой группы обладают способностью подавлять рост микроорганизмов. В ветеринарной практике чаще всего используют: бриллиантовый зеленый (оказывает губительное действие на микробную клетку, соединяясь с ее белками, липидами, мукополисахаридами), акридин (блокирует анионные группы, жизненно необходимые бактериям), метиленовый синий (изменяет течение окислительно-восстановительных реакций, нарушая метаболические процессы микробной клетки).

 

Фенолы (фенол, крезол и их производные). Эффективность действия препаратов этой группы обусловлена их способностью легко проникать через клеточную мембрану внутрь клетки, денатурировать белки цитоплазмы и подавлять функции некоторых ферментов, что сопровождается нарушением метаболизма и приводит к гибели микробной клетки.

 

Альдегиды (формальдегид, глутаровый альдегид). Вещества этой группы способны вызывать дегидратацию поверхностных слоев клетки, легко проникать внутрь клетки и вступать в связь с аминогруппами белков, денатурируя их.

 

 

23. Действие биологических факторов на микроорганизмы: антибиотики, их классификация по
происхождению, механизму действия, спектру действия. Устойчивость микробов к анти­
биотикам.

 

Микроорганизмы подвержены действию не только физических и химических, но и биологических факторов. Биологические факторы, обладающие свойством воздействовать на микроорганизмы, весьма разнообразны. Все живые существа объединены в устойчивые экологические системы – биоценозы. Для каждого биоценоза характерно видовое и количественное соотношение популяций, их структуры и взаимоотношения. Среди большого количества биоценозов особое место занимают микробиоценозы – сообщества (ассоциации) микроорганизмов. Взаимоотношения между отдельными видами микроорганизмов в пределах одного сообщества могут быть различными и проявляться в форме синергизма, сателлизма, антагонизма и др.

 

Синергизм. Для такого типа взаимоотношений между особями микробной ассоциации характерны одинаковые физиологические процессы у различных микроорганизмов, в результате чего имеет место увеличение количества веществ, синтезируемых микробной ассоциацией.

 

Сателлизм. При таком типе взаимоотношений происходит стимуляция роста одного вида микроорганизма продуктами жизнедеятельности другого.

 

Антагонизм. Для этого типа взаимоотношений характерно угнетение жизнедеятельности (а иногда и полное уничтожение) одних микроорганизмов веществами, синтезируемыми другими микроорганизмами. 

 

Паразитизм – это такое отношение между членами ассоциации, при котором один из организмов (паразит) получает необходимые вещества за счет другого организма (хозяина), нанося при этом вред, что приводит к гибели хозяина.

 

Кроме взаимного влияния микроорганизмов друг на друга существуют и другие биологические объекты и, следовательно, и другие виды воздействия. Особый интерес представляет фагия. Это одна из форм взаимодействия между фагами (по своей природе это вирусы) и другими микроорганизмами (бактериями, актиномицетами, синезелеными водорослями). Фаги, как и другие вирусы можно обнаружить при помощи электронного микроскопа. Их размеры достигают 200нм. Фаги имеют овальную головку с отростком (хвостом). Головка окружена белковой оболочкой, внутри ее содержится нуклеиновая кислота (обычно ДНК). Отросток представляет собой полую трубку, покрытую белковым чехлом, способным сокращаться. На конце отростка находится базальная пластинка с зубцами, от которой отходят нити (фибриллы). Процесс взаимодействия фага с клеткой состоит из последовательной смены стадий:

 

 

I стадия – адсорбция фага и прикрепление его к клеточной стенке. Фаг «узнает» клетку при помощи концевых нитей своих отростков.

 

II стадия – проникновение ДНК фага в клетку. Эта стадия происходит под действием ферментов фага, которые разрушают клеточную стенку. Затем происходит сокращение наружной оболочки отростка и содержимое головки (ДНК) выталкивается в клетку.

 

III стадия – биосинтез фаговой нуклеиновой кислоты и белков капсида. Биосинтеза составных частей фага происходит с использованием веществ микробной клетки.

 

IV стадия – морфогенез фага. Этот процесс заключается в заполнении фаговой нуклеиновой кислотой пустотелых фаговых капсид и формировании зрелых частиц фага.

 

V стадия – выход фаговых частиц из разрушенной бактериальной клетки.

 

Взаимоотношения между фагами и другими микроорганизмами могут проявляться в виде продуктивной инфекции или лизогении. Состояние продуктивной инфекции характерно для фагов-агрессоров (вирулентных). Вирулентные фаги при проникновении в клетку бактерий интенсивно размножаются в ней, вызывая ее гибель. Состояние лизогении характерно для умеренных фагов (фагов-комменсалов). При контакте умеренного фага с бактериальной клеткой, клетка не гибнет, а становится носителем фага. При этом бактериофаг находится в состоянии профага, его геном ассоциируется с геномом бактерии и воспроизводится как часть бактериальной нуклеиновой кислоты.

 

 

По степени специфичности действия фаги подразделяют на три группы:

 

·   монофаги – способны лизировать бактерии одного вида;

·   полифаги – способны лизировать бактерии разных видов (преимущественно родственных);

·   фаговары – способны лизировать только определенные варианты данного вида бактерий.

 

 

Кроме перечисленных широко используется действие еще одной группы биологически активных веществ, способных избирательно подавлять рост, инактивировать микроорганизмы, грибы, риккетсии, простейших и др. Это обширная группа антибиотиков, в настоящее время насчитывающая около 2000 соединений различного происхождения.

 

По происхождению антибиотики подразделяют на шесть групп:

1. Антибиотики, образуемые грибами и лишайниками. К этой группе относят пенициллин, гризеофульвин, цефалоспорин, усниновая кислота.

 

2. Антибиотики, продуцируемые актиномицетами. К этой группе относят стрептомицин, неомицин, канамицин, хлортетрациклин, хлорамфеникол, эритромицин, тилозин, нистатин.

 

3. Антибиотики, продуцируемые бактериями. Эта группа менее обширна, чем группа антибиотиков грибного и актиномицетного происхождения. Способностью продуцировать антибиотики обладают в большинстве своем сапрофитные бактерии, обитающие в почве. К этой группе относят колицин, грамицидин, пиоционин, субтилин, полимиксин. Некоторые из этих антибиотиков токсичны при парэнтеральном введении и применяются местно.

 

4. Антибиотики животного происхождения. К этой группе относят вещества, образуемые тканями животных: эритрин, выделяемый из эритроцитов некоторых животных; экмолин, полученный из тканей рыб; лизоцим, интерферон.

 

5. Антибиотики растительного происхождения. Многие растения способны синтезировать летучие и нелетучие вещества, обладающие бактерицидным и бактериостатическим действием на микроорганизмы. Такие соединения называют фитонцидами. Фитонциды призваны обеспечить защиту растений от возбудителей различных заболеваний. Некоторые фитонциды выделены в чистом виде. Например, аллицин – из чеснока, рафанин – из семян редиса, иманин – из зверобоя.

 

6. Синтетические антибиотики, полученные искусственно путем биосинтеза.

 

 

По механизму действия выделяют четыре основные группы антибиотиков:

 

1. Антибиотики, ингибирующие синтез пептидогликана клеточной стенки (пенициллины, цефалоспорины).

 

2. Антибиотики, нарушающие функцию цитоплазматической мембраны (грамицидин, полиены).

 

3. Антибиотики, разрушающие рибосомальные субчастицы и сдерживающие синтез белка (тетрациклины, амино-гликозиды, макролиды).

 

4. Антибиотики, избирательно подавляющие синтез нуклеиновых кислот (гризеофульвин, неомицин, новобиоцин).

 

В основе лечения с помощью антибиотиков лежит сложная иммунобиологическая реакция и, применяя антибиотики необходимо помнить об их иммунодепрессивных свойствах. Прежде чем назначить тот или иной антибиотик, необходимо знать его свойства, способ введения, спектр и механизм действия, срок сохранения в организме и пути выведения из организма. При несоблюдении правил применения антибиотиков могут возникнуть тяжелые последствия – токсикозы, морфофункциональные изменения в желудочно-кишечном тракте. Многие антибиотики обладают нейротоксическим, гепатотоксическим, нефротоксическим действием, угнетают функции эндокринной и кроветворной систем. При продолжительном приеме антибиотиков угнетается нормальная микрофлора организма, развиваются дисбактериозы. Одновременно начинает развиваться нечувствительная к антибиотику микрофлора, вызывая развитие суперинфекций (кандидозы). При неправильном применении антибиотиков утрачивается чувствительность возбудителей инфекционных заболеваний к применяемым препаратам, образуются антибиотико-резистентные формы микроорганизмов. В таких случаях применения антибиотиков с лечебной целью становится бессмысленным.

 

Устойчивость

 

Устойчивость микроорганизмов к действию антибиотиков вызвана несколькими причинами. В основном они сводятся к следующим. Во-первых, в любой совокупности микроорганизмов, сосуществующих на каком-то определенном участке субстрата, встречаются естественно устойчивые к антибиотикам варианты (примерно одна особь на миллион). При воздействии антибиотика па популяцию основная масса клеток гибнет (если антибиотик обладает бактерицидным действием) или прекращает развитие (если антибиотик обладает бактериостатическим действием). В то же самое время устойчивые к антибиотику единичные клетки продолжают беспрепятственно размножаться. Устойчивость к антибиотику этими клетками передается по наследству, давая начало новой устойчивой к антибиотику популяции. В данном случае происходит селекция (отбор) устойчивых вариантов с помощью антибиотика. Вовторых, у чувствительных к антибиотику микроорганизмов может идти процесс адаптации (приспособления) к вредному воздействию антибиотического вещества. В этом случае может наблюдаться, с одной стороны, замена одних звеньев обмена веществ микроорганизма, естественный ход которых нарушается антибиотиком, другими звеньями, не подверженными действию препарата. При этом микроорганизм также не будет подавляться антибиотиком. С другой — микроорганизмы могут начать усиленно вырабатывать вещества, разрушающие молекулу антибиотика, тем самым нейтрализуя его действие. Например, ряд штаммов стафилококков и спороносных бактерий образует фермент пенициллиназу, разрушающий пенициллин с образованием продуктов, не обладающих антибиотической активностью. Это явление называется энзиматической инактивацией антибиотиков.

   Интересно отметить, что пенициллиназа в настоящее время нашла практическое применение в качестве антидота — препарата, снимающего вредное действие пенициллина, когда он вызывает тяжелые аллергические реакции, угрожающие жизни больного.

   Микроорганизмы, обладающие устойчивостью к одному антибиотику, одновременно устойчивы и к другим антибиотическим веществам, сходным с первым по механизму действия. Это явление называется перекрестной устойчивостью. Например, микроорганизмы, ставшие устойчивыми к тетрациклину, одновременно приобретают устойчивость к хлортетрациклину и окситетрациклину.

   Наконец, есть штаммы микроорганизмов, которые содержат в своих клетках так называемые R-факторы, или факторы резистентности (устойчивости). Распространение R-факторов среди болезнетворных бактерий в наибольшей степени снижает эффективность лечения многими антибиотиками по сравнению с другими видами микробной устойчивости, так как обусловливает устойчивость одновременно к нескольким антибактериальным веществам.

   Все эти факты говорят о том, что для успешного лечения антибиотиками следует перед их назначением определять антибиотикорезистентность болезнетворных микробов,- а также пытаться преодолевать лекарственную устойчивость микробов.

   Основные пути преодоления устойчивости микроорганизмов к антибиотикам, снижающей эффективность лечения, следующие:

   изыскание и внедрение в практику новых антибиотиков, а также получение производных известных антибиотиков;

   применение для лечения не одного, а одновременно нескольких антибиотиков с различным механизмом действия; в этих случаях одновременно подавляются разные процессы обмена веществ микробной клетки, что ведет к быстрой ее гибели и в значительной степени затрудняет развитие устойчивости у микроорганизмов; применение комбинации антибиотиков с другими химиотерапевтическими препаратами. Например, сочетание стрептомицина с парааминосалициловой кислотой (ПАСК) и фтивазидом резко повышает эффективность лечения туберкулеза;

   подавление действия ферментов, разрушающих антибиотики (например, действие пенициллиназы можно подавить кристаллвиолетом);

   освобождение устойчивых бактерий от факторов множественной лекарственной устойчивости (R-факторов), для чего можно использовать некоторые красители.

   Существует много противоречивых теорий, которые пытаются объяснить происхождение устойчивости к лекарственным веществам. В основном они касаются вопросов о роли мутаций и адаптации в приобретении устойчивости. По-видимому, в процессе развития устойчивости к лекарственным веществам, в том числе и к антибиотикам, играют определенную роль как адаптивные, так и мутационные изменения.

   В настоящее время, когда антибиотики широко применяются, устойчивые к антибиотическим препаратам формы микроорганизмов встречаются очень часто.

 

24. Методы определения чувствительности бактерий к антибиотикам.

 

Методы определения чувствительности к антибиотикам

 

Методы определения чувствительности бактерий к антибиотикам делятся на 2 группы: диффузионные и методы разведения.Определение чувствительности бактерий к антибиотикам:

диффузионные методы

-с использованием дисков с антибиотиками

-с помощью Е-тестов

-методы разведения

-разведение в жидкой питательной среде (бульоне)

-разведение в агаре

 

-При определении чувствительности диско-диффузионным методом на поверхность агара в чашке Петри наносят бактериальную суспензию определенной плотности (обычно эквивалентную стандарту мутности 0,5 по McFarland) и затем помещают диски, содержащие определенное количество антибиотика. Диффузия антибиотика в агар приводит к формированию зоны подавления роста микроорганизмов вокруг дисков. После инкубации чашек в термостате при температуре 35о-37оС в течение ночи учитывают результат путем измерения диаметра зоны вокруг диска в миллиметрах (рис. 1).

 

 

-Определение чувствительности микроорганизма с помощью Е-теста проводится аналогично тестированию диско-диффузионным методом. Отличие состоит в том, что вместо диска с антибиотиком используют полоску Е-теста, содержащую градиент концентраций антибиотика от максимальной к минимальной (рис. 2). В месте пересечения эллипсовидной зоны подавления роста с полоской Е-теста получают значение минимальной подавляющей концентрации (МПК).

 

Несомненным достоинством диффузионных методов является простота тестирования и доступность выполнения в любой бактериологической лаборатории. Однако с учетом высокой стоимости Е-тестов для рутинной работы обычно используют диско-диффузионный метод.

 

-Методы разведения основаны на использовании двойных последовательных разведений концентраций антибиотика от максимальной к минимальной (например от 128 мкг/мл, 64 мкг/мл, и т.д. до 0,5 мкг/мл, 0,25 мкг/мл и 0,125 мкг/мл). При этом антибиотик в различных концентрациях вносят в жидкую питательную среду (бульон) или в агар. Затем бактериальную суспензию определенной плотности, соответствующую стандарту мутности 0,5 по MсFarland, помещают в бульон с антибиотиком или на поверхность агара в чашке. После инкубации в течение ночи при температуре 35о-37оС проводят учет полученных результатов. Наличие роста микроорганизма в бульоне (помутнение бульона) или на поверхности агара свидетельствует о том, что данная концентрация антибиотика недостаточна, чтобы подавить его жизнеспособность. По мере увеличения концентрации антибиотика рост микроорганизма ухудшается. Первую наименьшую концентрацию антибиотика (из серии последовательных разведений), где визуально не определяется бактериальный рост принято считать минимальной подавляющей концентрацией (МПК). Измеряется МПК в мг/л или мкг/мл (рис. 3).Минимальная подавляющая концентрация (МПК) - наименьшая концентрация антибиотика (мг/л или мкг/мл), которая in vitro полностью подавляет видимый рост бактерий

 

Чувствительные микроорганизмы (susceptible)

 

Клинически к чувствительным относят бактерии (с учетом параметров, полученных in vitro), если при лечении стандартными дозами антибиотика инфекций, вызываемых этими микроорганизмами, наблюдают хороший терапевтический эффект.

 

При отсутствии достоверной клинической информации подразделение на категории чувствительности базируется на совместном учете данных, полученных in vitro, и фармакокинетики, т.е. на концентрациях антибиотика, достижимых в месте инфекции (или в сыворотке крови).

 

Резистентные микроорганизмы (resistant)

 

К резистентным (устойчивым) относят бактерии, когда при лечении инфекции, вызванной этими микроорганизмами, нет эффекта от терапии даже при использовании максимальных доз антибиотика. Такие микроорганизмы имеют механизмы резистентности.

 

Микроорганизмы c промежуточной резистентностью (intermediate)

 

Клинически промежуточную резистентность у бактерий подразумевают в случае, если инфекция, вызванные такими штаммами, может иметь различный терапевтический исход. Однако лечение может быть успешным, если антибиотик используется в дозировке, превышающей стандартную, или инфекция локализуется в месте, где антибактериальный препарат накапливается в высоких концентрациях.

 

С микробиологической точки зрения к бактериям с промежуточной резистентностью относят субпопуляцию, находящуюся в соответствии со значениями МПК или диаметра зон, между чувствительными и резистентными микроорганизмами. Иногда штаммы с промежуточной резистентностью и резистентные бактерии объединяют в одну категорию резистентных микроорганизмов.

 

Необходимо отметить, что клиническая интерпретация чувствительности бактерий к антибиотикам является условной, поскольку исход терапии не всегда зависит только от активности антибактериального препарата против возбудителя. Клиницистам известны случаи, когда при резистентности микроорганизмов, по данным исследования in vitro, получали хороший клинический эффект. И наоборот, при чувствительности возбудителя может наблюдаться неэффективность терапии.

 

В определенных клинических ситуациях, когда недостаточно результатов исследования чувствительности обычными методами, определяют минимальную бактерицидную концентрацию.

 

Минимальная бактерицидная концентрация (МБК) - наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени.Минимальная бактерицидная концентрация (МБК) - это наименьшая концентрация антибиотика (мг/л или мкг/мл), которая при исследовании in vitro вызывает гибель 99,9% микроорганизмов от исходного уровня в течение определенного периода времени

 

Значение МБК используют при терапии антибиотиками, обладающими бактериостатическим действием, или при отсутствии эффекта от антибактериальной терапии у особой категории больных. Частными случаями для определения МБК могут быть, например, бактериальный эндокардит, остеомиелит или генерализованные инфекции у пациентов с иммунодефицитными состояниями.

 

В заключение хотелось бы отметить, что на сегодняшний день не существует методов, которые позволили бы с абсолютной достоверностью прогнозировать клинический эффект антибиотиков при лечении инфекционных болезней. Однако, данные результатов определения чувствительности могут служить хорошим ориентиром клиницистам для выбора и коррекции антибактериальной терапии.

 

Чувствительный     

Не имеет механизмов резистентности        

Терапия успешна при использовании обычных доз

 

С промежуточной резистентностью           

Субпопуляция, находящаяся между чувствительной и резистентной        

Терапия успешна при использовании максимальных доз или при локализации инфекции в местах, где антибиотик накапливается в высоких концентрациях

 

Резистентный         

Имеет механизмы резистентности  

Нет эффекта от терапии при использовании максимальных доз

 



Дата: 2019-02-02, просмотров: 222.