Разновидности топологий систем связи
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Топология типа «звезда».

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рисунок 9.2 - Топология типа «звезда»

 

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой, невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

Кольцевая топология.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рисунок 9.3 - Топология типа «кольцо»

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется.

Подключение новой рабочей станции требует краткосрочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор). В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.

                                                Рисунок 9.4 - Структура логической кольцевой цепи

Шинная топология.

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.

Рисунок 9.5 - Топология типа «шина»

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

Благодаря тому, что рабочие станции можно подключать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ВОЛС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке повышаются.

В ВОЛС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

Древовидная структура.

Наряду с известными топологиями вычислительных сетей «кольцо», «звезда» и «шина», на практике применяется и комбинированная, на пример древовидная структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети (корень) располагается в точке, в которой собираются коммуникационные линии информации (ветви дерева).

Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители и/или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.

На практике применяют две их разновидности, обеспечивающие подключение соответственно восьми или шестнадцати линий.

Устройство, к которому можно присоединить максимум три станции, называют пассивным концентратором. Пассивный концентратор обычно используют как разветвитель. Он не нуждается в усилителе. Предпосылкой для подключения пассивного концентратора является то, что возможное максимальное расстояние до рабочей станции не должно превышать нескольких десятков метров.

Рисунок 9.6 - «Древовидная структура»

Выбор топологии сети связи и определение нужного набора функциональных возможностей, которые будут оптимально соответствовать текущим и будущим требованиям заказчика, специфике его деятельности и региональным условиям развития его бизнеса, становится одним из главных условий быстрой окупаемости и эффективного использования телекоммуникационной сети. При построении или реорганизации сети связи необходимо оценивать и учитывать перспективы дальнейшего технологического развития и роста емкости сети.

Проектирование волоконно-оптической линии связи состоит из нескольких этапов:

1) Составление и согласование технического задания.

На этапе написания ТЗ определяется, что же именно, с каким запасом на развитие и для каких целей будет в дальнейшем построено. В техническом задании описываются все аспекты строящийся сети, принципиальные технические решения, объем работ и требования, предъявляемые заказчиком к проекту; корректно разграничиваются зоны ответственности проектной организации и заказчика в таких вопросах как получение исходных данных и согласование проекта с заинтересованными организациями.
   2) Проведение пред проектных изысканий и получение необходимых разрешений и согласований.

На месте будущего строительства проводят изыскательские работы, которые включают в себя: составление плана местности и изучение особенностей конкретных объектов находящихся в зоне будущего строительства.
       На основе этой информации определяются оптимальные трассы и методики прокладки кабеля, способы его крепления; определяют помещения, в которых будет размещено кроссовое оборудование.
      По результатам изысканий так же определяется перечень организаций, с которыми будет необходимо провести работы по получению технических условий и согласований.

3) Разработка рабочего проекта.

Проект выполняется на основании:

- технических условий;

- технических характеристик применяемого кабеля и кроссового оборудования;

- материалов обследований зданий и сооружений;

- действующих норм и правил на проектирование линейно-кабельных

сооружений связи и станционного оборудования.

      9.2. Технология монтажа ВОЛС.

      Технология проведения линейных и монтажных работ при строительстве ВОЛС значительно отличается от технологии традиционных электрических кабелей. Отличия в проведении работ на ВОЛС заключаются в своеобразии конструкции ОК:

- критичность к растягивающим усилиям;

- малыми поперечными размерами и массой;

- большими строительными длинами;

- сравнительно большими затуханиями на сростках 0В;

- невозможность содержания ОК под избыточным воздушным давлением;

- трудностями в организации служебной связи в процессе строительства ВОЛС с ОК не содержащих металлических элементов. При строительстве ВОЛС необходимо проводить 100% входной контроль кабеля, поступающего от заказчика или завода изготовителя. Вывоз барабанов с кабелем на трассу и прокладка кабеля без входного контроля не разрешается.

До вывоза барабанов на трассу проводят группирование строительных длин. В пределах регенерационного участка группирование осуществляется по конструктивным данным, и, главное по передаточным параметрам OK - затуханию и дисперсии.

Прокладка ОК осуществляется как в землю, так и кабельную канализацию. Так как в нашем случае кабель проходит в телефонной канализации рассмотрим именно этот способ подробно.




Дата: 2018-12-28, просмотров: 204.