1. Проранжировать индивидуальные значения первого испытуемого, полученные им в 1-м, 2-м, 3-ми т. д. замерах.
2. Проделать то же самое по отношению ко всем другим испытуемым.
3. Просуммировать ранги по столбцам. Проверить совпадение общей суммы рангов с расчетной суммой.
4. Расположить все условия в порядке возрастания их ранговых сумм в таблице.
5. Определить эмпирическое значение L по формуле:
где Ti - сумма рангов по данному условию;
j - порядковый номер, приписанный данному условию в упорядоченной последовательности условий.
6. Определить критические значения L для данного количества испытуемых n и данного количества условий с. Если Lэмп равен критическому значению или превышает его, тенденция достоверна.
χ 2 критерий Пирсона
Назначения критерия
Критерий χ2 применяется в двух целях;
1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным;
2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака[1].
Ограничения критерия
1. Объем выборки должен быть достаточно большим: п≥30.
2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f>5. Если, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5*7=35 обращений. Таким образом, если количество разрядов (k ) задано заранее, как в данном случае, минимальное число наблюдений (nmin) определяется по формуле: nmin=k*5.
3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопоставляемых распределениях.
4. Необходимо вносить "поправку на непрерывность" при сопоставлении распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ2 уменьшается.
5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду.
6. Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.
Расчет критерия χ2 (Пирсон)
1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).
2. Рядом с каждой эмпирической частотой записать теоретическую частоту (второй столбец).
3. Подсчитать разности между эмпирической и теоретической частотой по каждому разряду (строке) и записать их в третий столбец.
4. Определить число степеней свободы по формуле:
ν =κ-1
где κ - количество разрядов признака.
Если ν=1, внести поправку на "непрерывность".
5. Возвести в квадрат полученные разности и занести их в четвертый столбец.
6. Разделить полученные квадраты разностей на теоретическую частоту и записать результаты в пятый столбец.
7. Просуммировать значения пятого столбца. Полученную сумму обозначить как χ2ЭМП.
8. Определить критические значения для данного числа степеней свободы V.
Если χ2эмп меньше критического значения, расхождения между распределениями статистически недостоверны.
Если χ2эмп равно критическому значению или превышает его, расхождения между распределениями статистически достоверны.
λ - критерий Колмогорова-Смирнова
Назначение критерия
Критерий λ предназначен для сопоставления двух распределений:
а) эмпирического с теоретическим, например, равномерным или
нормальным;
б) одного эмпирического распределения с другими эмпирическим
распределением.
Критерий позволяет найти точку, в которой сумма накопленных расхождений между двумя распределениями является наибольшей, и оценить достоверность этого расхождения.
Ограничения критерия λ
1. Критерий требует, чтобы выборка была достаточно большой. При сопоставлении двух эмпирических распределений необходимо, чтобы п1,2 >50. Сопоставление эмпирического распределения с теоретическим иногда допускается при п>5.
2. Разряды должны быть упорядочены по нарастанию или убыванию какого-либо признака. Они обязательно должны отражать какое-то однонаправленное его изменение. Например, мы можем за разряды принять дни недели, 1-й, 2-й, 3-й месяцы после прохождения курса терапии, повышение температуры тела, усиление чувства недостаточности и т. д. В то же время, если мы возьмем разряды, которые случайно оказались выстроенными в данную последовательность, то и накопление частот будет отражать лишь этот элемент случайного соседства разрядов. Например, если шесть стимульных картин в методике Хекхаузена разным испытуемым предъявляются в разном порядке, мы не вправе говорить о накоплении реакций при переходе от картины №1 стандартного набора к картине №2 и т. д. Мы не можем говорить об однонаправленном изменении признака при сопоставлении категорий "очередность рождения", "национальность", "специфика полученного образования" и т.п. Эти данные представляют собой номинативные шкалы: в них нет никакого однозначного однонаправленного изменения признака.
Итак, мы не можем накапливать частоты по разрядам, которые отличаются лишь качественно и не представляют собой шкалы порядка. Во всех тех случаях, когда разряды представляют собой не упорядоченные по возрастанию или убыванию какого-либо признака категории, нам следует применять метод χ2.
Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
1. Занести в таблицу наименования разрядов и соответствующие им
эмпирические частоты (первый столбец).
2. Подсчитать относительные эмпирические частоты (частости) для
каждого разряда по формуле:
f*эмп=fэмп/n
где fэмп - эмпирическая частота по данному разряду;
п - общее количество наблюдений. Занести результаты во второй столбец.
3. Подсчитать накопленные эмпирические частости Σf*j по формуле:
где Σf*j=Σf*j-1+f*j - частость, накопленная на предыдущих разрядах; j - порядковый номер разряда; f * j - эмпирическая частость данного /-го разряда. Занести результаты в третий столбец таблицы.
4. Подсчитать накопленные теоретические частости для каждого раз
ряда по формуле:
Σf*т j=Σf*Т j-1+f*т j где Σf*т j-1 - теоретическая частость, накопленная на предыдущих
разрядах;
j - порядковый номер разряда;
f*т j - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.
5. Вычислить разности между эмпирическими и теоретическими нако
пленными частостями по каждому разряду (между значениями 3-го
и 4-го столбцов).
6. Записать в пятый столбец абсолютные величины полученных раз
ностей, без их знака. Обозначить их как d .
7. Определить по пятому столбцу наибольшую абсолютную величину
разности - dmax.
8. Определить или рассчитать критические
значения dmax для данного количества наблюдений n.
Если dmax равно критическому значению d или превышает его, различия между распределениями достоверны.
Критерий φ* — угловое преобразование Фишера
Назначение критерия φ*
Критерий Фишера предназначен для сопоставления двух выборок по частоте встречаемости интересующего исследователя эффекта.
Ограничения критерия φ*
1. Ни одна из сопоставляемых долей не должна быть равной нулю. Формально нет препятствий для применения метода φ в случаях, когда доля наблюдений в одной из выборок равна 0. Однако в этих случаях результат может оказаться неоправданно завышенным.
2. Верхний предел в критерии φ отсутствует - выборки могут быть сколь угодно большими.
Нижний предел - 2 наблюдения в одной из выборок. Однако должны соблюдаться следующие соотношения в численности двух выборок:
а) если в одной выборке всего 2 наблюдения, то во второй должно быть не менее 30:
б) если в одной из выборок всего 3 наблюдения, то во второй должно быть не менее 7:
в) если в одной из выборок всего 4 наблюдения, то во второй должно быть не менее 5:
г) при n 1 , n 2 ≥5 возможны любые сопоставления.
В принципе возможно и сопоставление выборок, не отвечающих этому условию, например, с соотношением n 1=2, n 2=15, но в этих случаях не удастся выявить достоверных различий.
Расчет критерия φ*
1. Определить те значения признака, которые будут критерием для разделения испытуемых на тех, у кого "есть эффект" и тех, у кого "нет эффекта". Если признак измерен количественно, использовать критерий λ для поиска оптимальной точки разделения.
2. Начертить четырехклеточную таблицу из двух столбцов и двух строк. Первый столбец - "есть эффект"; второй столбец - "нет эффекта"; первая строка сверху - 1 группа (выборка); вторая строка - 2 группа (выборка).
3. Подсчитать количество испытуемых в первой группе, у которых "есть эффект", и занести это число в левую верхнюю ячейку таблицы.
4. Подсчитать количество испытуемых в первой выборке, у которых "нет эффекта", и занести это число в правую верхнюю ячейку таблицы. Подсчитать сумму по двум верхним ячейкам. Она должна совпадать с количеством испытуемых в первой группе.
5. Подсчитать количество испытуемых во второй группе, у которых "есть эффект", и занести это число в левую нижнюю ячейку таблицы.
6. Подсчитать количество испытуемых во второй выборке, у которых "нет эффекта", и занести это число в правую нижнюю ячейку таблицы. Подсчитать сумму по двум нижним ячейкам. Она должна совпадать с количеством испытуемых во второй группе (выборке).
7. Определить процентные доли испытуемых, у которых "есть эффект", путем отнесения их количества к общему количеству испытуемых в данной группе (выборке). Записать полученные процентные доли соответственно в левой верхней и левой нижней ячейках таблицы в скобках, чтобы не перепутать их с абсолютными значениями.
8. Проверить, не равняется ли одна из сопоставляемых процентных долей нулю. Если это так, попробовать изменить это, сдвинув точку разделения групп в ту или иную сторону. Если это невозможно или нежелательно, отказаться от критерия φ* и использовать критерий χ 2.
9. Определить по Табл. XII Приложения 1 величины углов φ для каждой из сопоставляемых процентных долей.
10. Подсчитать эмпирическое значение φ* по формуле:
где: φ1 - угол, соответствующий большей процентной доле;
φ2 - угол, соответствующий меньшей процентной доле;
n 1 - количество наблюдений в выборке 1;
n 2 - количество наблюдений в выборке 2.
11. Сопоставить полученное значение φ* с критическими значениями: φ* ≤1,64 (р<0,05) и φ* ≤2,31 (р<0,01).
Если φ*эмп ≤φ*кр. H0 отвергается.
При необходимости определить точный уровень значимости полученного φ*эмп по таблице критических значений.
Биномиальный критерий m
Назначение критерия m
Критерий предназначен для сопоставления частоты встречаемости какого-либо эффекта с теоретической или заданной частотой его встречаемости.
Он применяется в тех случаях, когда обследована лишь одна выборка объемом не более 300 наблюдений, в некоторых задачах - не больше 50 наблюдений.
Дата: 2018-11-18, просмотров: 755.