1. Наиболее наглядным видом выбора уравнения парной регрессии является:
а) аналитический;
б) графический;
в) экспериментальный (табличный).
2. Рассчитывать параметры парной линейной регрессии можно, если у нас есть:
а) не менее 5 наблюдений;
б) не менее 7 наблюдений;
в) не менее 10 наблюдений.
3. Суть метода наименьших квадратов состоит в:
а) минимизации суммы остаточных величин;
б) минимизации дисперсии результативного признака;
в) минимизации суммы квадратов остаточных величин.
4. Коэффициент линейного парного уравнения регрессии:
а) показывает среднее изменение результата с изменением фактора на одну единицу;
б) оценивает статистическую значимость уравнения регрессии;
в) показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.
5. На основании наблюдений за 50 семьями построено уравнение регрессии , где – потребление, – доход. Соответствуют ли знаки и значения коэффициентов регрессии теоретическим представлениям?
а) да;
б) нет;
в) ничего определенного сказать нельзя.
6. Суть коэффициента детерминации состоит в следующем:
а) оценивает качество модели из относительных отклонений по каждому наблюдению;
б) характеризует долю дисперсии результативного признака , объясняемую регрессией, в общей дисперсии результативного признака;
в) характеризует долю дисперсии , вызванную влиянием не учтенных в модели факторов.
7. Качество модели из относительных отклонений по каждому наблюдению оценивает:
а) коэффициент детерминации ;
б) -критерий Фишера;
в) средняя ошибка аппроксимации .
8. З начимость уравнения регрессии в целом оценивает:
а) -критерий Фишера;
б) -критерий Стьюдента;
в) коэффициент детерминации .
9. Классический метод к оцениванию параметров регрессии основан на:
а) методе наименьших квадратов:
б) методе максимального правдоподобия:
в) шаговом регрессионном анализе.
10. Остаточная сумма квадратов равна нулю:
а) когда правильно подобрана регрессионная модель;
б) когда между признаками существует точная функциональная связь;
в) никогда.
11. Объясненная (факторная) сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
12. Остаточная сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
13. Общая сумма квадратов отклонений в линейной парной модели имеет число степеней свободы, равное:
а) ;
б) ;
в) .
14. Для оценки значимости коэффициентов регрессии рассчитывают:
а) -критерий Фишера;
б) -критерий Стьюдента;
в) коэффициент детерминации .
15. Какое уравнение регрессии нельзя свести к линейному виду:
а) ;
б) :
в) .
16. Какое из уравнений является степенным:
а) ;
б) :
в) .
17. Параметр в степенной модели является:
а) коэффициентом детерминации;
б) коэффициентом эластичности;
в) коэффициентом корреляции.
18. Коэффициент корреляции может принимать значения:
а) от –1 до 1;
б) от 0 до 1;
в) любые.
19. Для функции средний коэффициент эластичности имеет вид:
а) ;
б) ;
в) .
20. Какое из следующих уравнений нелинейно по оцениваемым параметрам:
а) ;
б) ;
в) .
Дата: 2018-11-18, просмотров: 499.