Успех работы Грегора Менделя был связан с тем, что он правильно выбрал объект исследования и соблюдал принципы, лежащие в основе гибридологического метода:
1. в качестве объекта исследования были взяты растения гороха одного вида.
2. растения заметно отличались по сравниваемым признакам – высокие – низкие, с желтыми и зелеными семенами, с гладкими и морщинистыми семенами.
3. первое поколение от исходных родительских форм всегда было одинаковым: высокие родители давали высокое потомство, низкие родители давали растения маленького роста; во втором поколении происходило расщепление в признаках.
Первый закон Менделя (правило единообразия):
выведен на основе статистических данных, полученных Г. Менделем при скрещивании разных сортов гороха, имевших четкие альтернативные различия по следующим признакам:
– форма семени (круглая / некруглая);
– окраска семени (желтая / зеленая);
– кожура семени (гладкая / морщинистая) и т.д.
При скрещивании растений с желтыми и зелеными семенами Мендель обнаружил, что все гибриды первого поколения оказались с желтыми семенами (назвал этот признак доминантным).
Признак, определяющий зеленую окраску семян, был назван рецессивным (отступающим, подавленным).
1. На основании полученных результатов и их анализа Мендель сформулировал свой первый закон: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения оказываются по этим признакам единообразными и похожими на родителя с доминантным признаком.
В случае неполного доминирования только 25% особей фенотипически похожи на родителя с доминантным признаком и 25% особей будут похожи на рецессивного по фенотипу родителя. Остальные 50% гетерозигот будут от них фенотипически отличаться.
2. Для выявления гетерозиготности особи по определенному аллелю, т.е. наличию рецессивного гена в генотипе, используется анализирующее скрещивание. Для этого особь с доминантным признаком (АА? или Аа?) скрещивают с гомозиготной по рецессивному аллелю особью. В случае гетерозиготности особи с доминантным признаком расщепление в потомстве будет 1:1
АА × аа → 100% Аа
Аа × аа → 50% Аа и 50% аа
Второй закон Менделя (закон расщепления).
При скрещивании гетерозиготных гибридов первого поколения между собой, во втором поколении обнаруживается расщепление по данному признаку. Это расщепление носит закономерный статистический характер: 3 : 1 по фенотипу и 1: 2 :1 по генотипу. В случае скрещивания форм с желтыми и зелеными семенами в соответствии со вторым законом Менделя получают следующие результаты скрещивания.
Появляются семена как с желтой, так и с зеленой окраской.
Третий закон Менделя
(закон независимого наследования при дигибридном (полигибридном) скрещивании): выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.
Для дальнейшей записи используется решетка Пеннета.
Во втором поколении возможно появление 4 фенотипов в отношении 9 : 3 : 3 : 1 и 9 генотипов.
В результате анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:
– для диплоидных организмов;
– для генов, расположенных в разных гомологичных хромосомах;
– при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.
Указанные условия являются цитологическими основами дигибридного (и полигибридного) скрещивания.
В экспериментах Менделя установлена дискретность (прерывистость) наследственного материала, что позже привело к открытию генов, как элементарных материальных носителей наследственной информации.
В соответствии с гипотезой чистоты гамет в сперматозоиде или яйцеклетке в норме всегда находится только одна из гомологичных хромосом данной пары. Именно поэтому при оплодотворении восстанавливается диплоидный набор хромосом данного организма. Расщепление – это результат случайного сочетания гамет, несущих разные аллели.
Так как события случайны, то закономерность носит статистический характер, т.е. определяется большим числом равновероятных событий – встреч гамет, несущих разные (или одинаковые) альтернативные гены.
Тематические задания
А1. Доминантный аллель – это
1) пара одинаковых по проявлению генов
2) один из двух аллельных генов
3) ген, подавляющий действие другого гена
4) подавляемый ген
А2. Часть молекулы ДНК считается геном, если в ней закодирована информация о
1) нескольких признаках организма
2) одном признаке организма
3) нескольких белках
4) молекуле т-РНК
А3. Если признак не проявляется у гибридов первого поколения, то он называется
1) альтернативным
2) доминантным
3) не полностью доминирующим
4) рецессивным
А4. Аллельные гены расположены в
1) идентичных участках гомологичных хромосом
2) разных участках гомологичных хромосом
3) идентичных участках негомологичных хромосом
4) разных участках негомологичных хромосом
А5. Какая запись отражает дигетерозиготный организм:
1) ААВВ
2) АаВв
3) АаВвСс
4) ааВВсс
А6. Определите фенотип тыквы с генотипом Сс ВВ, зная, что белая окраска доминирует над желтой, а дисковидная форма плодов – над шаровидной
1) белая, шаровидная
2) желтая, шаровидная
3) желтая дисковидная
4) белая, дисковидная
А7. Какое потомство получится при скрещивании комолой (безрогой) гомозиготной коровы (ген комолости В доминирует) с рогатым быком.
1) все ВВ
2) все Вв
3) 50% ВВ и 50% Вв
4) 75% ВВ и 25% Вв
А8. У человека ген лопоухости (А) доминирует над геном нормально прижатых ушей, а ген нерыжих (В) волос над геном рыжих волос. Каков генотип лопоухого, рыжего отца, если в браке с нерыжей женщиной, имеющей нормально прижатые уши, у него были только лопоухие, нерыжие дети?
1) ААвв
2) АаВв
3) ааВВ
4) ААвВ
А9. Какова вероятность рождения голубоглазого (а), светловолосого (в) ребенка от брака голубоглазого темноволосого (В) отца и кареглазой (А), светловолосой матери, гетерозиготных по доминантным признакам?
1) 25%
2) 75%
3) 12,5%
4) 50%
А10. Второй закон Менделя – это закон, описывающий процесс
1) сцепления генов
2) взаимного влияния генов
3) расщепления признаков
4) независимого распределения гамет
А11. Сколько типов гамет образует организм с генотипом ААВвСс
1) один
2) два
3) три
4) четыре
Хромосомная теория наследственности.
Основоположник хромосомной теории Томас Гент Морган и его ученики установили, что:
– каждый ген имеет в хромосоме определенный локус (место);
– гены в хромосоме расположены в определенной последовательности;
– наиболее близко расположенные гены одной хромосомы сцеплены, поэтому наследуются преимущественно вместе;
– группы генов, расположенных в одной хромосоме, образуют группы сцепления;
– число групп сцепления равно гаплоидному набору хромосом у гомогаметных особей и n+1 у гетерогаметных особей;
– между гомологичными хромосомами может происходить обмен участками (кроссинговер); в результате кроссинговера возникают гаметы, хромосомы которых содержат новые комбинации генов;
– частота (в %) кроссинговера между неаллельными генами пропорциональна расстоянию между ними;
– набор хромосом в клетках данного типа (кариотип) является характерной особенностью вида;
– частота кроссинговера между гомологичными хромосомами зависит от расстояния между генами, локализованными в одной хромосоме. Чем это расстояние больше, тем выше частота кроссинговера. За единицу расстояния между генами принимается 1 морганида (1% кроссинговера) или процент появления кроссоверных особей. При значении этой величины в 10 морганид можно утверждать, что частота перекреста хромосом в точках расположения данных генов равна 10% и что в 10% потомства будут выявлены новые генетические комбинации.
Для выяснения характера расположения генов в хромосомах и определения частоты кроссинговера между ними строятся генетические карты. Карта отражает порядок расположения генов в хромосоме и расстояние между генами одной хромосомы.
Эти выводы Моргана и его сотрудников получили название хромосомной теории наследственности.
Важнейшее следствие этой теории:
современные представления о гене, как о функциональной единице наследственности, его делимости и способности к взаимодействию с другими генами.
Дата: 2018-12-21, просмотров: 626.