Организм как биологическая система
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Раздел 3

Организм как биологическая система

Онтогенез

Онтогенез – это индивидуальное развитие организма от момента образования зиготы до смерти. В ходе онтогенеза проявляется закономерная смена фенотипов, характерных для данного вида.

Различают два типа онтогенеза:

1. Прямой:

– неличиночный (рыбы, птицы, пресмыкающиеся, яйцеклетки богаты питательными веществами, значительная часть онтогенеза в яйце во внешней среде)

– внутриутробный (млекопитающие, обеспечение жизненных функций и развития зародыша материнским организмом через плаценту, роль провизорных органов).

2. Непрямой – когда организм проходит через стадию личинки – зародыша, способного к самостоятельному существованию (насекомые, амфибии, иглокожие), для этого типа онтогенеза характерен метаморфоз – превращение в зрелую особь. Метаморфоз:

неполный (яйцо-личинка-имаго) – свойствен тараканам, саранчовым, клопам. У этих насекомых из яйца выходит личинка, похожая на взрослое насекомое (нимфа) и после каждой линьки происходит постепенный рост имеющихся крыльев и органов размножения. У стрекоз и подёнок личинки живут в водной среде, дышат жабрами и лишены крыльев. При метаморфозе они превращаются в крылатых насекомых, дышащих с помощью дыхалец.

полный (яйцо-личинка-куколка-имаго): у бабочек, жуков, комаров, пчёл, мух и др. развитие протекает с полным метаморфозом, когда питание осуществляется на стадии личинки, а расселение и размножение – на взрослой стадии. При этом в ходе превращений происходит последовательная смена не похожих друг на друга форм: из яйца вылупляется червеобразная личинка, которая после нескольких линек превращается в малоподвижную куколку, а из куколки выходит крылатое взрослое насекомое с тремя парами конечностей. У двоякодышащих рыб личинка, имеющая наружные жабры, превращается во взрослую особь с жабрами, лежащими в полости тела, а также имеющую лёгкое.
У земноводных похожий на малька рыб головастик, обитающий в воде, превращается в лягушонка с лёгкими, конечностями, костными зубами, который выходит на сушу.

Этапы онтогенеза:

1. Пренатальный (дородовой, эмбриональный) – от образования зиготы до выхода из яйцевых оболочек или рождения; организм не способен к самостоятельному существованию, развивается внутри материнского организма и полностью зависит от него.

Стадии:

зиготы;

бластулы – стадия развития многоклеточного зародыша после дробления зиготы (митотического деления с самоудвоением ДНК, но без роста клеток). Все ядра клеток-бластомеров диплоидные, с абсолютно одинаковой генетической информацией. Обычно бластула состоит из 64 бластомеров. Зигота в процессе бластуляции не увеличивается в размерах, увеличивается число клеток, из которых она состоит; образуется однослойный зародыш, покрытый бластодермой, формируется первичная полость тела – бластоцель;

гаструлы – стадия образования зародышевых листков – эктодермы, энтодермы (у двухслойных кишечнополостных и губок) и мезодермы (у трехслойных многоклеточных животных). У кишечнополостных животных на этой стадии формируются специализированные клетки, такие как стрекательные, половые, кожно-мускульные и т.д. Процесс образования гаструлы называется гаструляцией.

Нейрулы – стадии закладки отдельных органов.

Гисто– и органогенеза – стадии появления специфических функциональных, морфологических и биохимических различий между отдельными клетками и частями развивающегося зародыша. У Позвоночных животных в органогенезе можно выделить:

а) нейрогенез – процесс формирования нервной трубки (головного и спинного мозга) из эктодермального зародышевого листка, а также кожного покрова, органов зрения и слуха;

б) хордогенез – процесс формирования из мезодермы хорды, мышц, почек, скелета, кровеносных сосудов;

в) процесс формирования из энтодермы кишечника и связанных с ним органов – печени, поджелудочной железы, легких. Последовательное развитие тканей и органов, их дифференцировка происходит благодаря эмбриональной индукции – влиянию одних частей зародыша на развитие других частей. Это связано с деятельностью белков, которые включаются в работу на определенных стадиях развития зародыша. Белки регулируют активность генов, определяющих признаки организма. Таким образом, становится понятным, почему признаки определенного организма появляются постепенно. Все гены никогда не включаются в работу вместе. В конкретное время работает лишь часть генов.

2. Постнатальный (послеродовой, постэмбриональный) – с момента рождения до смерти; самостоятельное питание, передвижение и т.д.

Важнейшим событием онтогенеза является возможность осуществления размножения, по этому признаку выделяют следующие периоды постнатального этапа онтогенеза:

– дорепродуктивный (особь не способна к размножению) подразделяют на эмбриональный и ювенильный;

– репродуктивный (наиболее стабильное состояние);

– пострепродуктивный – связан со старением, характерно прекращение участия в размножении, устойчивость снижается. Различают внешние признаки старости (снижение эластичности кожи, поседение волос, развитие дальнозоркости) и внутренние (обратное развитие органов, снижение эластичности кровеносных сосудов, нарушение кровоснабжения мозга, деятельности сердца и др.). Все это приводит к снижению жизнеспособности и повышению вероятности гибели.

Постэмбриональный период человека подразделяется на следующие периоды:

– грудничковый (от рождения до 4 недель);

– грудной (от 4 недель до года);

– дошкольный (ясельный, средний, старший);

– школьный (ранний, подростковый);

– репродуктивный (молодой до 45 лет, зрелый до 65 лет);

– пострепродуктивный (пожилой до 75 лет и старческий – после 75 лет).

 

Онтогенез - индивидуальное развитие организма, состоит из 3 перио­дов:

Прогенез - созревание гамет и их слияние с образованием зиготы.

Эмбриональный период (или эмбриогенез) – с момента образования зиготы до рождения или выхода организма из яйцевых оболочек. Этапы эмбриогенеза: дробление, в результате которого образуется бластула; гаструляция, в процессе которой возникают зародышевые листки (эктодерма, энтодерма и мезодерма); образование тканей и органов. Спо­соб дробления зиготы зависит от количества желтка и характера его рас­пределения в цитоплазме яйцеклетки. Различают полное и неполное дроб­ление. Полное дробление может быть равномерным и неравномерным, а неполное – дискоидальным и краевым. Процесс гаструляцииосуществляется разными способами и зависит от строения бластулы, т.е., в конечном счете, от количества желтка в яйцеклетке. Для гаструляции характерны перемещения и дифференцировка кле­ток, в результате чего образуется двух- или трехслойный зародыш. После завершения гаструляции происходит развитие осевого ком­плекса: хорды, нервной трубки, туловищной мезодермы; стадия нейрулы. Процесс дифференцировки клеток определяется многими механизмами, среди которых важную роль играет эмбриональная индукция.

Постэмбриональный период начинается после рождения или вы­хода организма из яйцевых оболочек. В нем различают прямое развитие, которое проходит без личиночной стадии, и непрямое развитие, при кото­ром имеется личиночная стадия, заканчивающаяся превращением (метаморфозом) во взрослую особь.

Тематические задания

 

А1. Двухслойное строение тела характерно для

1) кольчатых червей

2) насекомых

3) кишечнополостных

4) простейших

 

А2. Мезодермы нет у

1) дождевого червя

2) майского жука

3) кораллового полипа

4) крысы

 

А3. Прямое развитие происходит у

1) лягушки

2) саранчи

3) мухи

4) пчелы

 

А4. В результате дробления зиготы образуется

1) гаструла

2) бластула

3) нейрула

4) мезодерма

 

А5. Из энтодермы развивается

1) аорта

2) мозг

3) легкие

4) кожа

 

А6. Отдельные органы многоклеточного организма закладываются на стадии

1) бластулы

2) гаструлы

3) оплодотворения

4) нейрулы

 

А7. Бластуляция – это

1) рост клеток

2) многократное дробление зиготы

3) деление клетки

4) увеличение зиготы в размерах

 

А8. Гаструла зародыша собаки – это:

1) зародыш с образовавшейся нервной трубкой

2) многоклеточный однослойный зародыш с полостью тела

3) многоклеточный трехслойный зародыш с полостью тела

4) многоклеточный двухслойный зародыш

 

А9. Дифференциация клеток, органов и тканей происходит в результате

1) действия определенных генов в определенное время

2) одновременного действия всех генов

3) гаструляции и бластуляции

4) развития определенных органов

 

А10. Какая стадия эмбрионального развития позвоночных животных представлена множеством неспециализированных клеток?

1) бластула

2) гаструла

3) ранняя нейрула

4) поздняя нейрула

 

В1. Что из перечисленного относится к эмбриогенезу?

1) оплодотворение

2) гаструляция

3) нейрогенез

4) сперматогенез

5) дробление

6) овогенез

 

В2. Выберите признаки, характерные для бластулы

1) зародыш, у которого сформирована хорда

2) многоклеточный зародыш с полостью тела

3) зародыш из 32 клеток

4) трехслойный зародыш

5) 1слойный зародыш с полостью тела

6) зародыш из 1 слоя клеток


Методы генетики человека.

Генеалогический – метод составления родословных по различным источникам – рассказам, фотографиям, картинам. Выясняются признаки предков и устанавливаются типы наследования признаков.

Типы наследования: а) аутосомно-доминантное, б) аутосомно-рецессивное, в) сцепленное с полом наследование.

Человек, в отношении которого составляется родословная, называется пробандом.

Близнецовый. Метод изучения генетических закономерностей на близнецах. Близнецы бывают однояйцовые (монозиготные, идентичные) и разнояйцовые (дизиготные, неидентичные).

Цитогенетический. Метод микроскопического изучения хромосом человека. Позволяет выявить генные и хромосомные мутации.

Биохимический. На основе биохимического анализа позволяет выявить гетерозиготного носителя заболевания, например носителя гена фенилкетонурии можно выявить по повышенной концентрации фенилаланина в крови.

Популяционно-генетический. Позволяет составить генетическую характеристику популяции, оценить степень концентрации различных аллелей и меру их гетерозиготности. Для анализа крупных популяций применяется закон Харди-Вайнберга.

Тематические задания

 

A1 Генеалогический метод основан на:

1) биохимическом анализе ДНК

2) изучении количества и структуры хромосом

3) составлении родословных

4) анализе биологических жидкостей человека

 

A2 Комбинативная изменчивость связана с:

1) новыми сочетаниями генов, которые возникают в результате кроссинговера, независимого расхождения негомологичных хромосом

2) изменениями в процессе индивидуального развития организма

3) генными и хромосомными мутациями

4) влиянием окружающей среды на организм

 

A3 В селекционной работе для создания разнообразия исходных форм применяется:

1) отдаленная гибридизация

2) экспериментальный мутагенез

3) явление полиплоидии

4) повышение продуктивности

 

A4 Направление биотехнологии, в котором используются микроорганизмы для получения антибиотиков и витаминов, называется:

1) биохимический синтез

2) генная инженерия

3) клеточная инженерия

4) микробиологический синтез

 

A5 При скрещивании двух морских свинок с черной шерстью (доминантный признак) получено потомство, среди которого особи с белой шерстью составили 25%. Каковы генотипы родителей?

1) АА х аа

2) Аа х АА

3) Аа х Аа

4) АА х АА

 

A6 Какие гены проявляют свое действие в первом гибридном поколении?

1) аллельные

2) доминантные

3) рецессивные

4) сцепленные

 

A7 Набор хромосом, характерный для данного вида организмов - это:

1) геном

2) генофонд

3) генотип

4) кариотип

 

A8 Количество групп сцепления генов у организмов зависит от числа:

1) пар гомологичных хромосом

2) аллельных генов

3) доминантных генов

4) молекул ДНК в ядре клетки

 

A9 Чистая линия растений - это потомство:

1) гетерозисных форм

2) одной самоопыляющейся особи

3) межсортового гибрида

4) двух гетерозиготных особей

 

A10 У собак чёрная шерсть (А) доминирует над коричневой (а), а коротконогость (В) - над нормальной длиной ног (b). Выберите генотип чёрной коротконогой собаки, гетерозиготной только по признаку длины ног.

1) ААBb

2) Аabb

3) AaBb

4) AABB

 

A11 Какой процент растений ночной красавицы с розовыми цветками можно ожидать от скрещивания растений с красными и белыми цветками (неполное доминирование)?

1) 25%

2) 50%

3) 75%

4) 100%

 

A12 При моногибридном скрещивании гетерозиготной особи с гомозиготной рецессивной в их потомстве происходит расщепление признаков по фенотипу в соотношении:

1) 3 : 1

2) 9 : 3 : 3 : 1

3) 1 : 1

4) 1 : 2 : 1

 

A13 В селекции для получения новых полиплоидных сортов растений:

1) скрещивают особи двух чистых линий

2) скрещивают родителей с их потомками

3) кратно увеличивают набор хромосом

4) увеличивают число гомозиготных особей

 

A14 Мутационная изменчивость, в отличие от модификационной:

1) носит обратимый характер

2) передаётся по наследству

3) характерна для всех особей вида

4) является проявлением нормы реакции признака

 

A15 При скрещивании доминантных и рецессивных особей первое гибридное поколение единообразно. Чем это объясняется?

1) все особи имеют одинаковый генотип

2) все особи имеют одинаковый фенотип

3) все особи имеют сходство с одним из родителей

4) все особи живут в одинаковых условиях

 

В1 Примерами взаимодействия неаллельных генов являются:

1) множественный аллелизм

2) полимерия

3) плейотропия

4) комплементарность

5) кодоминирование

6) эпистаз

 

В2 К искусственно выведенным популяциям организмов относятся:

1) сорт

2) вид

3) порода

4) тип

5) класс

6) штамм

 

B3 Установите соответствие между признаками изменчивости и её видом:

Признаки изменчивости Изменчивость
1) носит массовый характер 2) имеет приспособительное значение 3) связана с изменением генов или хромосом 4) пределы изменчивости зависят от нормы реакции 5) у потомков появляются новые признаки 6) изменения организмов необратимы А) мутационная Б) модификационная

 

B4 Установите соответствие между характеристикой мутации и ее типом:

Характеристика мутации Типы мутаций
1) включение двух лишних нуклеотидов в молекулу ДНК 2) кратное увеличение числа хромосом в гаплоидной клетке 3) нарушение последовательности аминокислот в молекуле белка 4) поворот участка хромосомы на 180° 5) уменьшение числа хромосом в соматической клетке 6) обмен участками негомологичных хромосом А) генные Б) хромосомные В) геномные

 

B5 Установите последовательность этапов постановки эксперимента для определения характера наследования признака:
А) статистическая обработка результатов

Б) скрещивание выбранных организмов

В) получение потомства и подсчет полученных особей с различными фенотипами
Г) выбор организмов с альтернативными признаками

B6 Установите последовательность событий, приводящих к появлению потомства с измененным признаком:

А) образование зиготы, содержащей нормальный и мутантный аллели
Б) рождение мутантного потомства

В) возникновение генной мутации в половой клетке

Г) действие мутагена на родительский организм

Д) оплодотворение

 

C1 Наличие хохла у уток наследуется как доминантный аутосомный признак. Гомозиготы по этому признаку погибают на ранних стадиях развития, а гетерозиготы жизнеспособны. Отсутствие хохла определяется рецессивным аллелем этого гена. Хохлатых уток скрестили между собой. Составьте схему решения задачи. Определите генотипы родителей, соотношение генотипов и фенотипов ожидаемых и родившихся потомков.

 

C2 При скрещивании красноплодной земляники между собой всегда получаются красные ягоды, а при скрещивании белоплодной – белые. В результате скрещивания этих сортов между собой получаются розовые ягоды. Какое потомство получится при скрещивании растений с розовыми плодами между собой? Составьте схему решения задачи. Какой генетический закон проявляется на этом примере?

 

C3 Дальтонизм (цветовая слепота) наследуется как рецессивный признак, сцепленный с Х-хромосомой. В семье отец и мать различают цвета нормально, но отец женщины был дальтоником. Составьте схему решения задачи, определите вероятность рождения в этой семье детей – носителей гена цветовой слепоты.

 

C4 Дигетерозиготное растение гороха нормального роста и с зелеными створками плодов скрестили с карликовым растением с желтыми створками плодов. Определите генотипы родителей, фенотипы и генотипы возможных потомков. Составьте схему решения задачи. Какова вероятность появления в потомстве карликовых растений с зелеными створками плодов?

 

C5 При скрещивании самцов морских свинок с белой прямой шерстью с самками с черной курчавой шерстью все потомки имели курчавую шерсть, причем у одной половины шерсть была белого цвета, у второй – черного. При скрещивании тех же самцов морских свинок (с белой прямой шерстью) с самками, имеющими черную прямую шерсть, все их потомство имело черную прямую шерсть. Определите доминантные и рецессивные признаки, генотипы всех родительских самцов и самок.

 

C6 У родителей с темными волосами и карими глазами родился светловолосый и голубоглазый ребенок. Определите генотипы родителей и первого ребенка. Составьте схему решения задачи. Гены обоих признаков расположены в различных аутосомах. Какой генетический закон проявляется в этом случае?

 

C7 Скрестили дигетерозиготных самок мухи дрозофилы с серым телом и нормальными крыльями (один из родителей этих самок был с черным телом и укороченными крыльями) с самцами с черным телом и укороченными крыльями. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, если известно, что гены окраски тела и формы крыльев находятся в одной аутосоме и между ними происходит кроссинговер. Объясните полученные результаты.

 

C8 У человека катаракта и шестипалость обусловлены доминантными аутосомными тесно сцепленными генами (кроссинговер между ними не происходит). Жена обладает обоими признаками, причем у ее отца было нормальное зрение и нормальное число пальцев. Муж здоров. Какие генотипы и фенотипы могут быть у их потомков? Составьте схему решения задачи. Объясните полученные результаты.




Генетика и селекция

 

Селекция (от лат. selectio, seligere – отбор) –

это наука о методах создания высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов.

Современная селекция

это обширная область человеческой деятельности, которая представляет собой сплав различных отраслей науки, производства сельскохозяйственной продукции и ее комплексной переработки.

В ходе селекции происходят устойчивые наследственные преобразования различных групп организмов. По словам Н.И. Вавилова, «…селекция представляет собой эволюцию, направляемую волей человека». Известно, что достижения селекции широко использовал Ч. Дарвин при обосновании основных положений эволюционной теории.

Современная селекция базируется на достижениях генетики и является основой эффективного высокопродуктивного сельского хозяйства и биотехнологии.

Задачи современной селекции

- Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.

- Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.

- Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.

- Повышение потребительских качеств продукции.

- Уменьшение доли побочных продуктов и их комплексная переработка.

- Уменьшение доли потерь от вредителей и болезней.

Учение о современной селекции было создано Николаем Ивановичем Вавиловым (1887–1943).

Многие хозяйственно-полезные признаки являются генотипически сложными, обусловленными совместным действием многих генов и генных комплексов. Необходимо выявить эти гены, установить характер взаимодействия между ними, иначе селекция может вестись вслепую. Поэтому Н.И. Вавилов утверждал, что именно генетика является теоретической основой селекции.

Н.И. Вавилов выделил следующие разделы селекции:

1) учение об исходном сортовом, видовом и родовом потенциалах;

2) учение о наследственной изменчивости (закономер­ности в изменчивости, учение о мутациях);

3) учение о роли среды в выявлении сортовых призна­ков (влияние отдельных факторов среды, учение о стадиях в развитии растений применитель­но к селекции);

4) теория гибридизации как в пределах близких форм, так и отдаленных видов;

5) теория селекционного процесса (самоопылители, перекрестноопылители, вегетативно и апогамно раз­множающиеся растения);

6) учение об основных направлениях в селекционной работе, таких, как селекция на иммунитет, на физиологические свойства (холодостой­кость, засухоустойчивость, фотопериодизм), селекция на технические качества, химический состав;

7) частная селекция растений, животных и микроорганизмов.

Учение об исходном материале является основой современной селекции. Исходный материал служит источником наследственной изменчивости – основы для искусственного отбора. Н.И. Вавилов установил, что на Земле существуют районы с особенно высоким уровнем генетического разнообразия культурных растений, и выделил основные центры происхождения культурных растений (первоначально Н.И. Вавилов выделил 8 центров, но затем сократил их число до 7). Для каждого центра установлены характерные для него важнейшие сельскохозяйственные культуры.

1. Тропический центр – включает территории тропической Индии, Индокитая, Южного Китая и островов Юго-Восточной Азии. Это родина таких растений, как рис, сахарный тростник, чай, лимон, апельсин, банан, баклажан, а также большого количества тропических плодовых и овощных культур.

2. Восточноазиатский центр – включает умеренные и субтропические части Центрального и Восточного Китая, Корею, Япо­нию и большую часть о. Тайвань. Это родина таких растений, как соя, просо, хурма, многих других овощных и плодовых культур.

3. Юго-западноазиатский центр – включает территории внутренней нагорной Малой Азии (Анатолии), Ирана, Афганистана, Средней Азии и Северо-Западной Индии. Сюда же примыкает Кавказ, культурная флора кото­рого, как показали исследования, генетически связана с Передней Азией. Родина мягких пшениц, ржи, овса, ячменя, гороха, дыни.

Этот центр может быть подразделен на следующие очаги:

а) Кавказский со множеством оригинальных видов пшеницы, ржи и плодовых;

б) Переднеазиатский, включающий Малую Азию, Внутреннюю Сирию и Палестину, Транс­иорданию, Иран, Северный Афганистан и Среднюю Азию вместе с Китайским Туркеста­ном;

в) Северо-западноиндийский, включающий, помимо Пенджаба и примыкающих провинций Северной Индии и Кашмира, также Белуджистан и Южный Афганистан. В исключительном видовом разно­образии здесь сосредоточены дикие родичи пше­ницы, ржи и различных европейских плодовых.

4. Средиземноморский центр – включает страны, расположенные по берегам Средиземного моря. Дал начало твердой пшенице, капусте, свекле, моркови, винограду, маслине, множеству других овощных и кормовых культур.

5. Абиссинский центр – харак­теризуется рядом эндемичных видов и даже родов культурных растений: кофейное дерево, арбуз, хлебный злак тэфф, масличное растение нуг, особый вид банана.

6. Центральноамериканский центр, охватывающий обширную территорию Северной Америки, включая Южную Мексику – три очага:

а) Горный южномексиканский,

б) Центральноамериканский,

в) Вест-Индский островной.

Кукуруза, подсолнечник, американские длинноволокнистые хлопчатники, какао (шоколадное дерево), ряд видов фасоли, тыквенных, многих плодовых (гвайява, аноны и авокадо).

7. Андийский центр, в пределах Южной Америки, приуроченный к Андийскому хребту. Это родина картофеля, томата. Отсюда ведут начало хинное дерево и кокаиновый куст.

 

Таким образом, начальное введение в культуру подавля­ющего числа возделываемых растений связано не только с флористическими областями, отли­чающимися богатой флорой, но и с древнейшими цивилизациями.

Н.И. Вавилов выделил группу вторичных культур, которые произошли от сорняков: рожь, овес и др.

Н.И. Вавилов установил, что «важным моментом при оценке материала для селекции является наличие в нем разнообразия наследственных форм». Н.И. Вавилов различал следующие группы исходных сортов: местные сорта, иноземные и инорайонные сорта. При разработке теории интродукции (внедрения) инорайонных и иноземных сортов «необходимо отличать первичные очаги формообразования от вторичных». Например, в Испании обнаружено «исключительно большое число разновидностей и видов пшениц», однако это объясняется «привлечением сюда многих видов из разных очагов».

Н.И. Вавилов придавал большое значение новым гибридным формам. Разнообразие генов и генотипов в исходном материале Н.И. Вавилов назвал генетическим потенциалом исходного материала.

Методы работы И.В. Мичурина

Неоценимый вклад в развитие селекции растений внес отечественный селекционер Иван Владимирович Мичурин (1855–1935). Объектом селекции служили разнообразные плодово-ягодные культуры: семечковые, косточковые; всего И.В. Мичуриным было создано свыше 300 сортов культурных растений, часть которых эксплуатируется до сих пор. Основные принципы работ И.В. Мичурина: гибридизация, отбор и воздействие условий среды. И.В. Мичурину принадлежит крылатое выражение; «Мы не можем ждать милостей от природы, взять их у неё – наша задача».

И.В. Мичурин был не просто талантливым садоводом-любителем. Он внес неоценимый вклад в мировую науку. В частности, Иван Владимирович экспериментально обосновал эффект смены доминирования: в зависимости от почвенно-климатических условий, характера подвоя и привоя и других факторов генотип может проявиться в фенотипе, а может и не проявиться. И.В. Мичурин использовал в своих работах метод ментора, основанный на различных комбинациях прививок. Для получения гибридов И.В. Мичурин широко использовал эколого-географические скрещивания – если родители происходят из разных географических районов или из разных местообитаний, то гетерозис проявляется наиболее сильно. Это вызвано тем, что эти родители имеют наиболее сильно различающиеся генотипы, сформировавшиеся в ходе естественного отбора в разных условиях. И.В. Мичурин установил, что селекцию сорта нужно вести в тех условиях, в которых планируется его дальнейшая эксплуатация.

 

Достижения отечественных селекционеров:

- Лукьяненко П.П. – озимая пшеница Безостая-1; всего более 40 сортов;

- Ремесло В.Н. – озимая пшеница Мироновская-808;

- Лорх А.Г., Букасов С.М., Юзепчук С.В. – картофель;

- Пустовойт В.С. – высокомасличные сорта подсолнечника;

- Жданов Л.А. – подсолнечник, устойчивый к заразихе;

- Хаджинов М.И., Галеев Г.С. – межлинейные гибриды кукурузы на основе ЦМС;

- Цицин Н.В. – пшенично-пырейные гибриды;

- Мазлумов А.Л. – сахарная свекла.

Закон гомологических рядов

Систематизируя учение об исходном материале, Н.И. Вавилов сформулировал закон гомологических рядов (1920 г.):

1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство.

Согласно этому закону, у генетически близких видов и родов существуют близкие гены, которые дают сходные серии множественных аллелей и вариантов признака.

Значение закона гомологических рядов:

- Н.И. Вавилов четко разграничил внутривидовую и межвидовую изменчивость. При этом вид рассматривался как целостная, исторически сложившаяся система.

- Н.И. Вавилов показал, что внутривидовая изменчивость небезгранична и подчиняется определенным закономерностям.

- Закон гомологических рядов является руководством для селекционеров, позволяя предсказать возможные варианты признаков.

Н. И. Вавилов впервые осуществил целенаправленный поиск редких или мутантных аллелей в природных популяциях и популяциях культурных растений. В наше время продолжается поиск мутантных аллелей для повышения продуктивности штаммов, сортов и пород.

Комплекс мероприятий, выполняемых селекционером от начала работы до создания нового сорта (породы, штамма), называется селекционным процессом. В общих чертах селекционный процесс включает три этапа:

получение исходного материала для отбора,

собственно отбор

испытание.

Нужно иметь в виду, что современный селекционный процесс начинается с создания модели сорта (породы), предназначенного для эксплуатации в определенных условиях, на определенном уровне агро(зоо)техники.

После создания модели сорта (породы) прогнозируются финансовые и ресурсные затраты на создание сорта (породы), оценивается возможность его комплексного использования, разрабатывается комплекс мероприятий от подбора исходного материала до внедрения сорта (породы) в сельскохозяйственное производство. И лишь после этого составляется непосредственный план селекционной работы.

Методы селекции:

Гибридизация.

Скрещивание организмов с разным генотипом является основным методом получения новых сочетаний признаков. Иногда гибридизация является необходимой, например, для предотвращения инбредной депрессии – проявляется при близкородственном скрещивании и выражается в снижении продуктивности и жизненности (виталитета). Инбредная депрессия – это явление, противоположное гетерозису.

Различают следующие типы скрещиваний:

Внутривидовые скрещивания – скрещиваются разные формы в пределах вида (не обязательно сорта и породы). К внутривидовым скрещиваниям относятся и скрещивания организмов одного вида, обитающих в разных экологических условиях и/или в разных географических районов (эколого-географические скрещивания). Внутривидовые скрещивания лежат в основе большинства других скрещиваний.

Близкородственные скрещивания – инцухт у растений и инбридинг у животных. Применяются для получения чистых линий.

Межлинейные скрещивания – скрещиваются представители чистых линий (а в ряде случаев – разных сортов и пород). Межлинейные скрещивания используются для подавления инбредной депрессии, а также для получения эффекта гетерозиса. Межлинейное скрещивание может выступать как самостоятельный этап селекционного процесса, однако в последние десятилетия межлинейные гибриды (кроссы, или гибриды первого поколения F1) все чаще используют для получения товарной продукции.

Возвратные скрещивания (бэк-кроссы) – это скрещивания гибридов (гетерозигот) с родительскими формами (гомозиготами). Например, скрещивания гетерозигот с доминантными гомозиготными формами используются для того, чтобы не допустить фенотипического проявления рецессивных аллелей.

Анализирующие скрещивания (являются разновидностью бэк-кроссов) – это скрещивания доминантных форм с неизвестным генотипом и рецессивно-гомозиготных тестерных линий. Такие скрещивания используются для анализа производителей по потомству: если в результате анализирующего скрещивания расщепление отсутствует, то доминантная форма гомозиготна; если же наблюдается расщепление 1:1 (1 часть особей с доминантными признаками :1 часть особей с рецессивными признаками), то доминантная форма гетерозиготна.

Насыщающие (заместительные) скрещивания также являются разновидностью возвратных скрещиваний. При многократных возвратных скрещиваниях возможно избирательное (дифференциальное) замещение аллелей (хромосом), например, можно постепенно уменьшить вероятность сохранения нежелательного аллеля.

Отдаленные скрещивания – межвидовые и межродовые. Обычно отдаленные гибриды бесплодны и их размножают вегетативным путем; для преодоления бесплодия гибридов применяют удвоение числа хромосом, таким путем получают амфидиплоидные организмы: ржано-пшеничные гибриды (тритикале), пшенично-пырейные гибриды.

Соматическая гибридизация – это гибридизация, основанная на слиянии соматических клеток совершенно несходных организмов.

Гетерозис. В ходе гибридизации часто проявляется гетерозис – гибридная сила, особенно в первом поколении гибридов. Механизмы гетерозиса до сих пор недостаточно изучены.

Наиболее популярны две теории гетерозиса:

теория доминирования исходит из представлений о том, что при скрещивании гомозигот у гибридов первого поколения неблагоприятные рецессивные аллели переводятся в гетерозиготное состояние: AAbb × aaBBAaBb; тогда AaBb > AAbb, AaBb > aaBB.

теория сверхдоминирования предполагает повышенную конститутивную (общую) приспособленность гетерозигот по сравнению с любой из гомозигот: Aa > AA и Aa > aa.

Существуют и более сложные представления о гетерозисе, например, теории гетерозиса В.А. Струнникова; суть этой теории в том, что в чистых линиях происходит накопление генов-модификаторов, подавляющих нежелательные эффекты некоторых аллелей; при скрещивании разных чистых линий каждая из них привносит свой компенсаторный комплекс генов-модификаторов, что усиливает подавление вредных аллелей.

В некоторых случаях возможно сохранение полученных генотипов и тем самым закрепление гетерозиса, например, при размножении растений вегетативным путем. Эффект гетерозиса сохраняется также при переводе диплоидных гетерозисных гибридов на полиплоидный уровень.

Искусственный отбор

включает две группы мероприятий: оценку исходного материала и избирательное размножение (воспроизведение) отобранных организмов или их частей. Рассмотрим методы оценки исходного материала на примере растений.

В процессе селекции материал оценивают по следующим критериям:

- определенный ритм развития, соответствующий почвенно-климатическим условиям, в которых планируется дальнейшая эксплуатация сорта;

- высокая потенциальная продуктивность при высоком качестве продукции;

- устойчивость к неблагоприятному воздействию физико-химических факторов среды (морозоустойчивость, зимоустойчивость, жароустойчивость, засухоустойчивость, устойчивость к различным видам химических загрязнений);

- устойчивость к воздействию болезней и вредителей (оценка по иммунитету);

- отзывчивость на агротехнику.

В идеале сорт должен отвечать не отдельным требованиям, а их комплексу. Однако на практике это часто оказывается невозможным, и именно поэтому создание композиций, состоящих из линий (клонов) с разными наследственными свойствами, считается наиболее быстрым и надежным способом повышения общей устойчивости агроэкосистем.

Доказано, что в генетически неоднородных системах возникают компенсаторные взаимодействия особей с различными особенностями роста и развития, чувствительности к динамике факторов среды, болезням, вредителям.

Для оценки селекционного материала используют методы:

Полевые методы дают наиболее надежные результаты, поскольку материал оценивается в естественных условиях по прямым признакам. Однако использование полевых методов не всегда возможно. Например, для оценки морозоустойчивости однолетних сеянцев необходима морозная бесснежная зима; если же в данном году такой зимы не было, то материал остается без оценки. Точно так же оценку на иммунитет на фоне естественного заражения можно проводить только в годы сильного распространения болезни или вредителя.

Лабораторные методы позволяют изменять градацию факторов среды по воле экспериментатора. Например, повреждения побегов имитируются с помощью обрезки. Однако в ряде случаев применение экспериментальных методов требует специального оборудования; например, для изучения зимостойкости требуются морозильные камеры с интенсивными источниками света.

Лабораторно-полевые методы совмещают достоинства и недостатки собственно полевых и лабораторных методов.

В особую группу выделяются провокационные методы, с помощью которых искусственно создается провокационный фон, то есть условия для выявления отношения растений к неблагоприятным физико-химическим и биотическим факторам. Интенсивность провокационных методов должна быть оптимальной. При слишком слабом провокационном фоне не гарантируется проявление нежелательного признака, а при слишком жестком фоне могут быть выбракованы растения, обладающие достаточной устойчивостью к действию данного фактора. К провокационным методам относится создание инфекционного фона при селекции на устойчивость к вредителям и болезням.

Селекция растений

Особенности растений как объекта селекции:

– Высокая плодовитость.

– Короткий жизненный цикл у травянистых растений: однолетников и двулетников.

– Очень длительный жизненный цикл у древесных растений.

– Возможность самоопыления (не всегда).

– Возможность вегетативного размножения (не всегда).

– Возможность межвидовой гибридизации с последующим восстановлением плодовитости.

– Возможность применения индуцированного мутагенеза.

Все это позволяет вести селекцию растений на самые разнообразные признаки в сжатые сроки и с наименьшими затратами.

Сорт –

это искусственная популяция растений или клон, прошедшие сортоиспытания и предназначенные для выращивания в определенных районах при соблюдении соответствующей агротехники.

Существует множество подходов к определению самого понятия «сорт» и множество типов и подтипов сортов, однако главным признаком сорта является его способность сохранять свои наследственные признаки при возобновлении.

Современные сорта делятся на две большие группы: сорта-популяции (которые воспроизводятся при половом размножении) и сорта-клоны (которые сохраняются только при вегетативном размножении). В каждой из групп сортов имеются подгруппы: сорта–самоопылители, сортосмеси, сорта-гибриды, сорта-химеры и др.

 

Селекция животных

Особенности животных как объекта селекции:

- Низкая плодовитость самок и высокая плодовитость самцов.

- Короткий жизненный цикл у птиц и мелких млекопитающих.

- Длительный жизненный цикл у крупных млекопитающих.

- Невозможность самооплодотворения.

- Невозможность клонирования в широких масштабах.

- Резкое снижение плодовитости и (или) жизнеспособности при отдаленной гибридизации.

- Невозможность применения индуцированного мутагенеза.

Перечисленные особенности тормозят развитие селекции животных, выведение новых пород связано с высокими затратами и занимает длительное время.

Порода –

это искусственная популяция домашних животных с определенным генофондом, обладающая определенными хозяйственно-полезными признаками.

Кроме пород существуют породные группы – это совокупность особей, сходных по внешним признакам, имеющих общих предков; но в отличие от породы, в породных группах отсутствует сложившийся генофонд, отсутствуют общепризнанные стандарты. Кроме того, существуют и так называемые местные породы, которые характеризуются сравнительно низкой продуктивностью, высоким уровнем генотипического разнообразия и высокой приспособленностью к местным условиям.

При селекции животных важную роль играет родословная родителей. Например, если в предыдущих поколениях имелись особи с высокой жирномолочностью, то можно предположить, что гены жирномолочности с определенной вероятностью перешли и к потомкам, и имеет смысл вести селекцию на дальнейшее повышение жирномолочности. Из-за инбредной депрессии важное значение имеет подбор родительских пар. Если самец и самка связаны родственными отношениями, то в их потомстве могут встретиться вредные рецессивные аллели.

Поскольку самки животных обычно малоплодовиты, то особое значение приобретает выявление самцов-производителей. Однако часто хозяйственно полезные признаки у самцов отсутствуют. Поэтому необходимо производить проверку самцов по потомству с применением анализирующего скрещивания. С помощью искусственного осеменения от одного самца-производителя с удачным набором генов можно получить многочисленное потомство. Для получения многочисленного потомства от самок используют «оплодотворение в пробирке»: у генетически ценных самок отбираются зрелые яйцеклетки, оплодотворяются вне организма, а затем пересаживаются (имплантируются) малоценным самкам. Эти методы достаточно трудоемки и применяются, в основном, в высокоразвитых странах.

 

Селекция микроорганизмов

Особенности микроорганизмов как объекта селекции:

- Исключительно высокая скорость размножения.

- Преимущественная гаплоидность или, наоборот, высокий уровень полиплоидии.

- Способность переносить высокие дозы мутагенов.

Микроорганизмы – это сборная группа, включающая бактерии, актиномицеты, настоящие грибы.

Микроорганизмы используются в традиционных биотехнологиях (хлебопечение, производство кисломолочных и других продуктов), а также в современных биотехнологиях: для получения разнообразных чистых веществ – ферментов, аминокислот, антибиотиков, биологически активных веществ, в качестве бактериальных удобрений, для утилизации разнообразных отходов и т. д.

Поскольку половой процесс у большинства микроорганизмов отсутствует, то при размножении мутантной особи (клетки) может быть получена культура генетически идентичных организмов – клон. Длительно сохраняемый клон микроорганизмов, характеризующийся собственными генетически устойчивыми признаками, называется штамм.

Основные методы селекции микроорганизмов: индуцированный мутагенез и последующий отбор. Поскольку скорость размножения микроорганизмов очень велика, то из множества полученных мутантов можно отобрать те, продуктивность которых в десятки и сотни раз превышает продуктивность «диких» штаммов.

В настоящее время при селекции микроорганизмов используются методы биотехнологии, в частности, методы генной инженерии, которые позволяют внедрять требуемый аллель непосредственно в генетический аппарат клетки.

Если микроорганизмы находятся в гаплоидной фазе, то новая мутация (или внедренный аллель) сразу же проявляется в фенотипе, и мутантов можно легко выявить. Затем полученных мутантов можно перевести в полиплоидное состояние (например, увеличив число ядер, нуклеоидов или других носителей генетической информации в клетках). В этом случае продуктивность штаммов резко возрастает. Однако продуктивность микроорганизмов нельзя повышать до бесконечности: например, если усиливается продуцирование антибиотиков, то снижается общая жизнеспособность клеток. Поэтому одной из проблем селекции микроорганизмов является повышение устойчивости, жизнеспособности и конкурентоспособности новых штаммов.

 

Тематические задания

 

А1. В основе одомашнивания животных и растений лежит

1) искусственный отбор

2) естественный отбор

3) приручение

4) методический отбор

 

А2. В средиземноморском центре культурных растений произошли

1) рис, шелковица

2) хлебное дерево, арахис

3) картофель, томаты

4) капуста, олива, брюква

 

А3. Примером геномной изменчивости является

1) серповидно-клеточная анемия

2) полиплоидная форма картофеля

3) альбинизм

3) дальтонизм

 

А4. Розы, сходные внешне и генетически, искусственно

выведенные селекционерами образуют

1) породу

2) сорт

3) вид

4)разновидность

 

А5. Польза гетерозиса заключается в

1) появлении чистых линий

2) преодолении нескрещиваемости гибридов

3) увеличении урожайности

4) повышении плодовитости гибридов

 

А6. В результате полиплоидии

1) возникает плодовитость у межвидовых гибридов

2) исчезает плодовитость у межвидовых гибридов

3) сохраняется чистая линия

4) угнетается жизнеспособность гибридов

 

А7. Инбридинг в селекции используют для

1) усиления гибридных свойств

2) выведения чистых линий

3) увеличения плодовитости потомства

4) повышения гетерозиготности организмов

 

А8. Закон гомологических рядов наследственной изменчивости позволил селекционерам с большей надежностью

1) выводить полиплоидные формы

2) преодолевать нескрещиваемость разных видов

3) увеличивать число случайных мутаций

4) прогнозировать получение нужных признаков у растений

 

А9. Инбридинг увеличивает

1) гетерозиготность популяции

2) частоту доминантных мутаций

3) гомозиготность популяции

4) частоту рецессивных мутаций

 

Раздел 3

Организм как биологическая система

Дата: 2018-12-21, просмотров: 721.