Основные данные стальных водогрейных котлов серийного производства
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Водогрейные котлы.

Для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов в настоящее время применяются стальные водогрейные кот­лы большой мощности (табл. 3.4).

                                                                                                                              Таблица 3.4

Блочно-модульные котельные

Блочно-модульная котельная (БМК) предназначена для отопления и горячего водоснабжения жилых домов, больниц, спортивных залов, школ, производственного, административного, культурно-бытового назначения и т.д., имеющих закрытую систему отопления.

Конструкция котельной представляет собой цельнометаллический утепленный корпус с трудносгораемой теплоизоляцией в котором размещено все технологическое оборудование и трубопроводы (рис.3.5.1).

Рис.3.5.1 Разрез блочно модульно котельной

В состав котельного агрегата входят: паровой котел, топка, паронагреватель, водный экономайзер, воздухоподогреватель, обмуровка, каркас с лестницами и площадками, а также арматура и гарнитура.

К вспомогательному оборудованию относятся: тягодутьевые и питающие устройства, оборудование водоподготовки, топливоподачи, а также контрольно-измерительные приборы и системы автоматизации.

Преимущества БМК.

1. Максимальная приближенность БМК к объекту теплоснабжения, что резко сокращает затраты на теплоснабжение.

2. Отсутствие значительных капитальных затрат на строительство здания под котельную.

3. Простое и удобное решение вопроса при децентрализации теплоснабжения.

4. Высокий уровень автоматизации, безопасности, надежности.

5. Полная заводская готовность и комплектация.

6. Быстрый ввод в эксплуатацию.

7. Транспортирование автомобильным и железнодорожным транспортом.

8. Широкий диапазон тепловых мощностей и нагрузок ГВС.

9. Минимальные затраты при монтаже и пуске БМК.

10. Применение различных типов котлов.

Ниже приведено описание газовой блочной котельной БКГ-2,5.

 

 


 


Оборудование котельной БКГ-2,5.

 

Блочная котельная БКГ-2,5 с двумя котлами КВГ-1,25-95 предназначена для централизованного теплоснабжения систем отопления и вентиляции промышленных, жилых и культурно-бытовых объектов.

Здание блочной котельной представляет из себя три блок – секции, изготовленные в заводских условиях и готовые для подключения к наружным сетям газа, водопровода, канализации и электрическим сетям (рис.3.5.2).

Рис. 3.5.2. Здание блочной котельной БКГ-2,5 ООО «Пермтрансгаз».

В котельной установлено технологическое оборудование с трубопроводной обвязкой, вентиляционными устройствами, электрооборудованием и средствами автоматики. Технологическое оборудование включает в себя:

- два котлоагрегата КВГ-1,25-95;

- насосы сетевые и подпиточные;

- дозатор антинакипина, грязевик,

- узлы учета энергоносителей;

- газовое распределительное устройство (ГРУ);

- газооборудование котлов;

- трубопроводные обвязки с запорной и регулирующей арматурой;

- вентиляцию и отопление.

Газоснабжение котельной.

Газоснабжение котельной предусматривается от газовых сетей среднего или высокого давления II категории (давление газа от 0,15 Мпа до 0,6 Мпа). Сопротивление газового тракта – 300 Па.

Схема подачи газа («обвязка») должна обеспечивает безопасную эксплуатацию котельного агрегата. Обвязка газопотребляющей установки (котла) включает подводящий газопровод, регулирующую и запорную арматуру, продувочную свечу, необходимые измерительные приборы, а также запальные устройства и систему автоматики безопасности и горения.

Внутреннее газооборудование котельной включает в себя:

- газовое распределительное устройство котельной (рис. 3.53);

- газовое оборудование каждого котла (рис. 3).

Рис. 3.5.3. Газовое распределительное устройство.

Снижение давления газа до 0,09 Мпа (0,9 кгс/см2) решено комбинированным регулятором давления РД, предназначенным для автоматического поддержания среднего выходного давления газа на заданном уровне, а также для автоматического отключения подачи газа при аварийном повышении или понижении выходного давления газа сверх допустимых значений. Давление настройки регулятора – 0,09 Мпа (0,9 кгс/см2) в пусковом режиме, давление срабатывания РД – 0,1 Мпа (1 кгс/см2).

Ручное регулирование давления газа возможно при помощи газовых задвижек Г11 и Г12.

Учет расхода газа на котельную решен в ГРУ при помощи газового счетчика СГ 16-100 с пределами измерения 70¸700 м3/час. Узел учета — коммерческий.

 

Газовое оборудование каждого котла представлено на рис. 3.5.4. На котельной БКГ-2,5 применена схема с установкой двух последовательно расположенных отсечных клапанов с электромагнитным приводом на газопроводах к горелке (нормально закрытые) и одного клапана на трубопроводе безопасности (нормально открытый).

Если какой либо электромагнитный клапан пропускает газ, то он будет выпущен в атмосферу. Таким образом, трубопровод безопасности предохраняет и от возможности попадания газа в топку при продувке газового коллектора.

Рис. 3.5.4. Газовое оборудование котла.

 

Газ через электромагнитные запорные клапаны и регулирующую орган РО с давлением 80 кПа поступает в блочную горелку БИГ 2-14. Горелка БИГ работает в диапазоне предельного регулирования при разрежении в топке от 8,9 до 29,4 Па. Розжиг горелки осуществляется запальником. Запальником является двуствольная горелка БИГ 1-2 с установленным электродом, запальник может работать постоянно, контроль пламени осуществляется фотодатчиком. Продукты сгорания через разведенные экранные трубы в нижней части топки поступают в конвективную часть. Пройдя снизу вверх пакет конвективных трубок с навитыми ребрами дымовые газы отводятся в газоход, установленный в верхней части и утилизатор. В газоход встроена заслонка – регулятор тяги РТ.

Котел рассчитан для работы с индивидуальным дымососом (4АМ100S4):

- мощность электродвигателя, кВт                                                                                      - 3,0

- скорость, об/мин                                                                                                                                     - 1500

- производительностью, м3/час                                                                                             - 4300

Практика показывает, что в случае нарушения правил пуска и эксплуатации газовых горелок, а также при неисправности отключающей арматуры в топке и газоходах возможны «хлопки» и взрывы газовоздушной смеси, приводящие к разрушению обмуровки котла. Для предохранения кладки котельные установки снабжены взрывными клапанами. Конструктивно взрывные клапаны представляют собой окна, закрытые легко разрываемыми листами асбеста или металлической фольги. Место установки этих клапанов – верхняя часть топки, газоходов и боровов.

 

Тепловая схема котельной.

Автоматизированный водогрейный котел КВГ-1,25-95 предназначен для водяных закрытых систем теплоснабжения с избыточным давлением до 1,0 Мпа (10 кгс/см2). Тепловой схемой котельной (рис. 3.5.5) предусматривается отпуск потребителям воды с температурой от 70°С до 95°С (368 К) для систем отопления и вентиляции.

Давление теплоносителя котельной БКГ-2,5:

- Рпр= до 6 кгс/см2 (0,6 Мпа);

- Робр= до 3 кгс/см2 (0,3 Мпа).

Нагреваемая вода поступает в верхний коллектор котла и проходит через 9 труб верхнего, заднего и нижнего экранов в нижний коллектор (1 ход), затем по 10 трубам совершает обратный ход в верхний коллектор (2 ход). После этого вода попадает в верхнюю часть правого коллектора и по трубам боковых экранов и конвективным трубам совершает 3 хода и отводится в наружную сеть из нижней части левого коллектора. При этом скорость воды составляет в экранных трубах 0,7-0,8 м/с, в конвективных трубах 0,3 м/с. Гидравлическое сопротивление котла при номинальном расходе не более 36 кПа. Расход воды через котел номинальный 43,2 т/ч.

На входе сетевого насоса должен постоянно работать грязевик для очистки сетевой воды от взвешенных частиц, которые могут забивать последний ряд конвективных труб.

Для регулирования температуры сетевой воды в зависимости от температуры наружного воздуха используется перемычка (линия перепуска) между прямым и обратным трубопроводами теплосети с установленным на ней регулирующим клапаном РК. Клапаном управляет по заданной программе «Минитерм-300», изменяя температуру воды в зависимости от температуры наружного воздуха и контрольного замера в отапливаемом помещении.

Рис. 3.5.5. Тепловая схема котельной БКГ-2,5.

 

Циркуляция сетевой воды осуществляется двумя сетевыми центробежными насосами КММ 100-80-160 (4АМ16032):

- рабочих, шт.                                                                                                        - 1

- резервных, шт.                                                                                                    - 1

- производительность, м3/час                                                                            - 100

- напор, м.вод.ст.                                                                                                   - 35

- мощность электродвигателя, кВт                                                  - 18

- скорость вращения двигателя, об/мин                                                              - 3000

 

Отпускаемая с котельной тепловая энергия измеряется тепло счетчиком СТ-125 в комплекте со счетчиком воды ВСТ-125, датчиком температуры и тепло вычислителем.

На трубопроводе прямой сетевой воды установлены два предохранительных клапана.

Подпитка тепловой сети осуществляется водой из хозяйственно-питьевого водопровода двумя подпиточными центробежными насосами КММ 50-32-125 (АИР80А2):

- рабочих, шт.                                                                                                        - 1

- резервных, шт.                                                                                                    - 1

- производительность, м3/час                                                                                - 25

- напор, м.вод.ст.                                                                                                   - 20

- мощность электродвигателя, кВт                                                  - 2,2

- скорость вращения двигателя, об/мин                                                              - 3000

 

Для предотвращения накипеобразования на внутренней поверхности трубок экранов котлов и защиты их от коррозии в обратную сетевую воду подмешивают антинакипин марки Н-50. Антинакипин применяется для закрытых систем теплоснабжения с нагревом до 115°С, давлением в обратном теплопроводе до 6 кгс/см2, при подпитке до 3 т/час.

Подмешивание антинакипина производится с помощью дозатора антинакипина:

- количество, шт.                                                                                                   - 1

- рабочее давление, Мпа                                                                    - 0,5

- объем, л                                                                                                 - 100

После наладки установка автоматически поддерживает нужную концентрацию антинакипина в сетевой воде 0,0001 (0,1 кг на 1 м3).

 

Электроснабжение.

По степени надежности электроснабжения котельная относится к потребителям II категории и запитывается двумя вводами 0,4 кВт (рис. 5).

Установленная мощность – 28,0 кВт.

Годовой расход электроэнергии – 165656 кВт×ч.

Для приема, учета электроэнергии и ручного ввода резерва предусматривается распределительный щит ШР, состоящий из двух секций.

Рис. 5. Электроснабжение котельной БКГ-2,5.

 

В нормальном режиме оба ввода рабочие, секционный автомат разомкнут. Один котел питается от одного ввода, второй котел питается от второго ввода. При отключении одного ввода в работе остается один котел, второй котел вручную переключается на рабочий ввод.

 

Горячая вода из выходного коллектора водогрейного котла 1 рециркуляционным насосом 2 подаётся во входной коллектор, и, смешиваясь с обратной сетевой водой, подогревает её. Заданная температура воды в теплосети достигается направлением части обратной воды после сетевого насоса 4. через перемычку 3 во входной коллектор.

При сжигании метана процесс горения характеризуется молекулярным балансом:

 СH4+ 2O2 = CO2 + 2Н2О,  из которого выводится соотношение массовых расходов кислорода и метана

 

Mo2 / Mcн4 = 2O2 /CH4 =64/16=4

 

Долевое содержание кислорода в окружающем воздухе составляет 23%, поэтому соотношение массовых расходов воздуха и метана:

МВОЗД / Mcн4 = 4/0,23=17,3.

3.6. Энергосбережение в котельных

Экономия сжигаемого топлива - основная задача обслуживающего персонала.

Поэтому обычно в котельных ведётся журнал со снятием показаний ряда КИП, ежесуточно должны меняться диаграммы регистрирующих приборов, запись показаний приборов производят через 30 минут, а со счётчиков, указывающих расход пара, воды, топлива, - через каждый час.

Данную информационную базу необходимо систематически анализировать, составлять эксплуатационный тепловой баланс котлоагрегатов.

Обычно регистрируются для паровых котлов, работающих на газе, следующие параметры:

-время

-пар: давление, температура, расход;

-вода: температура до экономайзера, температура после экономайзера, расход воды(если нет, расход пара).

- газ: давление в подающем газопроводе, температура, давление перед горелками, расход;

- воздух: давление после вентилятора, давление перед горелками, температура перед вентилятором

- продукты горения: температура за котлом, температура после экономайзера, разряжение в топке, разряжение за котлом, разряжение перед дымососом, содержание О2.

Пользуясь суточной ведомостью работы оборудования, можно обработать показатели работы за неделю и месяц. При любой неисправности или отклонении режима работы от нормируемого показатели изменяются. Например, понижение давления пара после пароперегревателя по сравнению с давлением в барабане свидетельствует о заносе его внутренней поверхности солями.

Повышение экономичности работы котельной установки может осуществляться двумя путями: малой модернизацией и большой. За счёт малой механизации и повышения культуры эксплуатации можно получить 10-15% экономии топлива. Малая механизация малозатратна, осуществляется как правило в короткий срок собственными силами предприятия. К таким мероприятиям относятся:

- систематические наладочные режимные испытания;

- снижения до предела неполноты сгорания при минимальном избытке воздуха в точке;

- систематический надзор за плотностью газовоздушного тракта, или снижения сопротивлений;

-слежение за качеством изоляций горячих поверхностей;

-внедрение регулируемого электропривода для экономичного регулирования производительности тягодутьевых машин и насосов;

- автоматизация процессов горения, температуры горячего пара и т.д.

       На основании испытаний составляется тепловой баланс работы котла (ниже приведен пример).

Деаэраторная часть.

 Участие кислорода растворенного в воде состоит в следующем:

  • кислород снимает лишние электроны;
  • устраняет тормозящие процесс ионы железа, перешед­шие в раствор, окисляя их, вследствие чего они осаждают­ся ся в виде малорастворимых гидроокисей трёхвалентного железа;
  • вызывает появление электропар при неравномер­ной концентрации кислорода около различных участков металла.

Таким образом, растворённый в воде кислород следует отнести к весьма активным коррозионным агентам. Однако роль кислорода этим не ограничивается. Эксперименты по­казывают, что кислород способен и замедлять коррозию ко­стельной стали. Это его свойство обусловлено образованием окисной пленки на поверхности металла. Такая пленка, со­стоящая главным образом из магнетита ( ), образуется быстро при достаточно высокой концентрации растворенно­го кислорода; она может образоваться и при действии дру­гих сильных окислителей, например перекиси водорода, озо­на и т. д. Установлено также, что в присутствии электроли­тов окисная пленка не защищает металл от коррозии. В отсутствие же электролитов, т. е. в очень чистой воде, пленка устойчива и коррозионные процессы существенно за­медляются. Следовательно, кислород, растворённый в воде может служить и замедлителем и активатором корро­зионных процессов. Эта двойственная роль кислорода отме­чалась всеми исследователями процессов коррозии. Вос­пользоваться пассивирующими свойствами растворенного кислорода можно, однако, лишь в тех случаях, когда вода практически лишена электролитов, т. е. является чистой  или близкой к тому. Поэтому пассивирующие его свойства могут быть реализованы только в тех установках, в которых питание котла осуществляется глубокообессолен­ной водой и нет нужды вводить в эту воду какие-либо ре­агенты — фосфаты, щелочи, комплексоны и т. п. Такие усло­вия осуществимы только на ТЭС с прямоточными котлами. Там же, где питательная вода содержит электролиты и где в нее необходимо вводить различные вещества для подавле­ния или ослабления накипеобразования в котлах (во всех этих ТЭС), кислород выступает как весьма активный корро­зионный агент, удаление которого совершенно необходимо.

 Между водой и газом, например воздухом, находящимся над водой, всегда происходит обмен различными молекула­ми. При установившемся равновесии обмен этот совершает­ся таким образом, что сколько вещества переходит из воды(водного раствора) в газовую среду, столько же и возвра­щается из этой газовой среды обратно в воду.

Молекулы воды, участвуя в тепловом движении, имеют различные скорости. Те из них, скорость которых и по нап­равлению и по значению оказывается достаточной, преодо­левают силы взаимного притяжения других молекул и выле­тают в газовое пространство. Передвигаясь по всем направлениям в этом газовом пространстве, молекулы  могут вновь оказаться в водной среде. Вследствие громад­ного числа молекул более или менее быстро наступает ста­тистическое равновесие, когда число молекул воды, пересе­кающих поверхность раздела газ - вода, становится одина­ковым в обоих направлениях. Наступившее равновесие нарушается при изменении, например, температуры жидко­сти. При этом скорость молекул возрастает и увеличивается их количество, перешедшее поверхность раздела газ — вода. Это повышает их концентрацию в газовом пространстве (повышает давление водяных паров). Такое повышение уве­личивает количество молекул, переходящих из газа в жид­кость и опять наступает состояние равновесия, но уже при иных температуре и давлении.

Аналогичные состояния равновесия устанавливаются и для других компонентов газовой среды, т. е. кислорода, азота, углекислоты и других газов, входящих в состав возду­ха. Каждой температуре соответствует определенная кон­центрация этих газов в воде при ее контакте с воздухом. И обратно, каждой температуре соответствует опреде­ленный состав газовой среды, состоящей из паров воды, кислорода, азота и других газов. При этом сумма пар­циальных давлений всех этих компонентов должна быть, очевидно, равна атмосферному давлению,

т. е. 1 кгс/см2,

Но при повышении температуры воды парциальное да­вление паров, т. е. , возрастает и при 100 °С (при кипении) = 1кгс/см2. Следовательно, парциальные давления всех остальных газов при этих условиях становятся равными ну­лю. Нарушается равновесие между газом, находящимся в растворе, и газовой средой, что приводит к выделению га­за из водного раствора — его деаэрации.

Если нагреть без перемешивания воду до 100 °С, например поместив сосуд в кипящую воду, то даже через продолжительное время уда­ление растворенных газов из воды, налитой в этот сосуд, не закончится. Можно опустить сосуд в кипящий раствор соли. При этом температура этого солевого раствора может быть доведена до 110°С, но и при этих условиях выделение раст­воренного кислорода из воды в сосуде будет совершаться довольно долго. Однако если увеличить поверхность жидко­сти, например, усиленным перемешиванием, то удаление кислорода произойдет значительно быстрее. В технике при­меняют разбрызгивание деаэрируемой воды, перемешивание ее струёй пара, барботаж пара через нагретую воду и другие приемы. Иногда применяют разрежение. Конструкция деаэ­ратора типов ДА, КДА-180 приведена на рис. 3.7.4.

Вода, подлежащая деаэрации, после предварительного подогрева подается в верхнюю часть колонки, последовательно проходит струйные и барботажную ступени, где осуществляется ее нагрев и обработка паром. Из колонки вода струями стекает в бак.

Основное количество пара подается в верхнюю часть бака деаэратора, вентилирует паровой объем бака и поступает в низ колонки. Проходя сквозь отверстия барботажной тарелки, пар подвергает воду на ней интенсивной обработке и направляется в струйные ступени.

В струях происходит нагрев воды до температуры, близкой к температуре насыщения, удаление основной массы газов и конденсация большей части пара. На барботажной тарелке осуществляется догрев воды до температуры насыщения и удаление микроколичеств газов. Оставшаяся парогазовая смесь (выпар) отводится из верхней зоны колонки через охладитель выпара в атмосферу.

Процесс дегазации завершается в деаэраторном баке, где происходит выделение из воды мельчайших пузырьков газов за счет отстоя. Часть пара подается через перфорированную трубу в слой воды в бак деаэратора. Эта дополнительная барботажная ступень интенсифицирует процесс дегазации.

Вода из бака деаэратора поступает на питательные насосы и далее подается в паровые котлы.

Предусмотрена защита деаэратора от превышения допустимого давления и уровня воды в баке с помощью комбинированного предохранительного устройства. Предохранительное устройство состоит из расширительного бачка и двух гидрозатворов, один из которых защищает деаэратор от превышения допустимого давления, а другой - от превышения уровня. При превышении допустимого давления в деаэраторе пар вытеснит воду из гидрозатвора и через расширительный бачок сбросится в атмосферу. При повышении уровня вода через переливную трубу поступит в расширительный бачок и перельется в бак нижних точек и далее - в продувочный колодец.

Для эффективного удаления газов, т. е. главным образом кислорода и углекислоты, необходимо, чтобы температура поступающей воды была близка к точке кипения при том давлении, при котором работает данный деаэратор. Количе­ство подаваемой на деаэрацию воды не должно превышать расчётную производительность аппарата во избежание «захлёбывания» колонки. Количество подаваемого пара дол­жно обеспечивать размер выпара  в пределах 0,02-0,03% количества деаэрируемой воды. Отклонения от этих условий, например уменьшение подачи пара и сокраще­ние выпара, снижение температуры поступающей воды или перегрузка аппарата, сказываются на качестве обескислороживания — остаточное содержание  в деаэрированной во­де повышается. Необходимо следить за состоянием распре­делительного устройства в колонке (головке) деаэратора. Коррозионный износ этого устройства ухудшает распреде­ление воды, которая начинает поступать в сборный бак сплошной струёй, и содержащийся в ней кислород не успе­вает выделиться. В некоторых конструкциях деаэраторов подводят пар также и в сборный бак, осуществляя в нём барботаж и тем улучшая удаление газов. Деаэратор должен выдавать воду с содержанием кислорода около 10-15 мкг/л.

Рис. 3.7.4. Схема деаэратора смешивающего типа.

1 - деаэрационная колонка; 2 - сборный бак деаэрированной воды; 3-водоуказательное стекло; 4 - манометр; 5 - гидравлический затвор; 6 - рас­пределительное устройство; 7, 8 - дырчатые тарелки; 9 - распределители пара; 10, 12 - отвод выпара и сконденсировавшихся паров воды; 11 - охладитель выпара; 13, 18 - подвод питательной воды и греющего пара; 14- выход несконденсировавшихся газов; 15 - заполнение гидрозатворрв; 16 - перелив гидрозатвора; 17- выход деаэрированной воды.

           Во многих котельных паровые котлы исчерпали свой ресурс и требуют замены. Паровые котлы подлежат регистрации в органах котлонадзора, которые не дают разрешения на дальнейшую эксплуатацию таких котлов в паровом режиме.
Был найден способ значительно продлить срок эксплуатации котлов путем перевода их в водогрейный режим с температурой нагрева воды до 115°С, при этом водогрейный котел по своим параметрам не подлежит регистрации в органах котлонадзора.
Основной проблемой, препятствующей переводу паровых котлов в водогрейный режим работы, является деаэрация подпиточной воды для теплосети. Котельные имеют, как правило, деаэраторы атмосферного типа, для работы которых требуется пар. При переводе котлов в водогрейный режим такие деаэраторы работать, не способны.

           Ряд деаэраторов можно перевести в вакуумный режим работы, используя вакуумные компрессоры отсоса газов.


 




ПРИМЕР ПЕРЕВОДА АТМОСФЕРНОГО ДЕАЭРАТОРА «ЦВД» В ВАКУУМНЫЙ РЕЖИМ.


Рис. 5. Деаэрационная установка содержит: центробежно-вихревой деаэратор 1 (ЦВД), емкость 2 (емкость может быть с регулируемым уровнем воды или со свободным сливом в аккумуляторный бак), капельный деаэратор – КД,  поверхностный охладитель выпара 4 (ОВ), паропровод 5, трубу 6 выпара из ЦВД, трубу 7 подачи воды из ЦВД в КД. трубу 8 выпара из бака, вестовую трубу 9, трубу 10 отсоса выпара на эжектор (ЭВ), трубу 11 подачи в деаэратор химочищенной воды, трубу 12 отвода деаэрированной воды и трубу 13 – слива конденсата из охладителя выпара.

РАБОТА В АТМОСФЕРНОМ РЕЖИМЕ
В ЦВД подается холодная вода. Пар в ЦВД  нагревает воду до 105° -106°С. и частично деаэрирует. Выпар поступает в ОВ, вода – в емкость 2 через капельный деаэратор 3. Вода разбрызгивается и каждая ее капля вскипает, образуя выпар. Происходит окончательная деаэрация воды. По трубе 8 выпар из бака 2 поступает в охладитель выпара. Неконденсируемые газы удаляются в атмосферу через вестовую трубу 9.
Если воду предварительно нагреть в поверхностных подогревателях до 104° – 106°С, то деаэрация будет происходить без подачи пара в ЦВД.

РАБОТА В ВАКУУМНОМ РЕЖИМЕ
Вестовая труба 9 перекрыта. Труба 13 соединена с всасывающим патрубком эжектора. Если деаэрируемую воду предварительно нагревать до 65°-100°С, то установка будет работать на "начальном эффекте" без подачи пара или перегретой воды. Вакуум установится пропорционально температуре воды на выходе из деаэратора. За счет вскипания вода охладится на 2°-5°С. Если вода холодная или недостаточно нагрета, то в ЦВД подают пар или перегретую воду.

 

Основным видом водоподготовки, применяемой в отопительных котельных

малой мощности, является упрощенная схема одноступенчатого или двухступенчатого натрий-катионирования с мокрым хранением реагента.

При натрий-катионировании плохо растворимые в воде соли переходят в хорошо растворимые, которые даже при большом содержании в воде не вы­падают в осадок. При этом общее количество солей не уменьшается. В качестве катионита применяют минерал глауконит, сульфоуголь и синтети­ческие смолы. Когда катионит истощится (о чем свидетельствует повы­шение жесткости умягченной воды), приступают к регенерации фильтра. Катионит регенерирует обратным про­током 10%-ного раствора поваренной соли NаС1. Регенерация состоит из взрыхления катионита, пропускания через него раствора поваренной соли и отмывки. При регенерации, ионы на­трия вытесняют из катионита погло­щенные им ионы кальция и магния, которые переходят в раствор. Обрабо­танный таким образом катионит обогащается катионами натрия и вновь обретает способность умягчать жест­кую воду. Для удаления продуктов регенерации и остатков раствора по­варенной соли катионит отмывают.

Для восстановления обменной способности катионит периодически обрабатывают раствором поваренной соли, поступаю­щей в фильтр из солерастворителя.

 Способ мокрого хранения реагента (поваренной соли) заключается в том, что соль хранят в бетонных резер­вуарах. В нижней части которых не­большое ее количество находится в растворенном состоянии (концентра­ция около 25 %), Этот раствор пода­ют насосом в фильтр соленого раство­ра, а затем в специальные баки, где разбавляют до концентрации реге­неративного раствора —10 % и расхо­дуют по мере надобности.

Основным оборудованием водоподготовки являются катионитовые фильтры, изображенные на рис. 3.7.6. Корпус фильтра рассчитан на рабочее давление 392-585 кПа (4-6 кгс/см2). В нижней его части расположено дренажное устройство для равномер­ного распределения проходящей воды по сечению фильтра. Дренажное уст­ройство закреплено в бетонной подуш­ке и состоит из коллектора и системы труб. Вода в трубы входит через штуцера, приваренные к верхней части труб. На штуцера навинчены шести­гранные пластмассовые колпачки с не­сколькими отверстиями на каждой грани. На поверхности бетона с дре­нажными колпачками расположена кварцевая подстилка с крупностью зерен от 10 до 1 мм. Крупность зерен уменьшается снизу вверх. Квар­цевая подстилка предохраняет вынос катионитового материала через дре­нажную систему. Над подстилкой зак­ладывают катионит, выше располага­ется водяная подушка. Верхний лаз служит для загрузки кварца и катио­нита, а нижний люк - для отвода во­ды во время промывки кварца при первичной загрузке.

 

 




Рис. 3.7.6. Натрий-катионовый фильтр

В котельной комплекса ПГТУ применяется 2-х ступенчатое Na-катионирование, что позволяет более глубоко умягчать воду для питания паровых котлов. Регенерация Na-катионового фильтра 1-ой ступени производится примерно один раз в неделю, регенерация фильтра 2-ой ступени – один раз в месяц.

На следующей странице приведена технологическая схема предварительной очистки воды химводоподготовки Березниковской ТЭЦ-4 ОАО ТГК-9



Водоподготовительные установки имеют много выходных координат, требующих поддержания их на требуемом технологией уровне. Приведем примеры систем регулирования.



Осветлитель.

Существует два способа регулирования подачи реагентов:

· Импульсное дозирование реагентов в осветлитель.

· Непрерывное дозирование реагентов в осветлитель.

При импульсном дозировании реагентов в осветлитель точность составляет  при изменении нагрузки осветлителя от 50 до 100%, но требует применениия большего количества функциональных блоков системы регулирования, чем при непрерывном регулировании. Предполагая, что изменение нагрузки не будет происходить в таких пределах за короткий промежуток времени, будем применять схему непрерывного дозирования реагентов в осветлитель (рис. 9).

Регуляторы воздействуют на регулирующий орган, выполненный в виде крана с электроприводом. Кран устанавливается в горизонтальном положении на линии подачи известкового молока в осветлитель из «циркуляционной петли» и при­соединяется к трубопроводам с помощью фланцевых или ниппельных соединений. При этом в «циркуляционной петле» необходимо поддерживать постоянные давление и концентрацию известкового молока.

 

Рис. 10. Схема непрерывного дозирования реагентов в осветлитель:

1-датчик рН-метра; 2-преобразователь рН-метра; 3-защитное устройство ;

4-блок вычислительный ; 5-регулятор; 6-блок управле­ния ; 7-блок прецизионного ин­тегрирования ; 5-пускатель бесконтактный; 9-исполнительный ме­ханизм; 10-источник питания; 11-регулирующий клапан на трубопро­воде известкового молока;

12-регулирующий клапан на трубопроводе коагу­лянта; 13-регулирующий клапан на трубопроводе полиакриламида; 14-от датчика расхода сырой воды к осветлителю.

Водогрейные котлы.

Для централизованного теплоснабжения крупных промышленных предприятий, городов и отдельных районов в настоящее время применяются стальные водогрейные кот­лы большой мощности (табл. 3.4).

                                                                                                                              Таблица 3.4

Основные данные стальных водогрейных котлов серийного производства.

 

 

 

 

 

Типоразмер

Расчетная теплопроизводительность, МДж/с

Поверхность нагрева, м2

Расчетный расход во- ды, кг/с

Расчетные тем­пературы воды, °С

Перепад давления воды, Мпа

Вид топлива

КПД брутто при расчетной производительно­сти, %

на входе на выходе
ТНГ-4 5,0 160 15,0 70 150 Газ 90
КВ-ГМ-4 4,65 127 13,8 70 150 0,12 Газ или мазут 90,5 или 86
КВ-ТС-4 4,65 127 13,8 70 150 0,10 Каменные или 82 или 81
              бурые угли  
КВ-7М-6.5 7,55 199 22,2 70 150 0,12 Газ или мазут 91 или 87
КВ-ТС-6,5 7,55 199 22,2 70 150 0,11 Каменные или 82
              бурые угли  
ТВГ-8М 9,65 292 29 70 150 0,14 Газ 90
КВ-ГМ-10 11,6 295 34,3 70 150 0,15 Газ или мазут 90 или 89
КВ-ТС-10 11,6 277 34,3 70 150 0,11 Каменные или 83 или 81
              бурые угли  
КВ-ГМ-20 23,3 513 68,7 70 150 0,23 Газ или мазут 90 или 88
КВ-ТС-20 23,3 489 68,7 70 150 0,15 Каменные или 81 или 79
              бурые угли  
КВ-ГМ-30 35 720 103 70 150 0,19 Газ или мазут 90 или 88
птвм-зом 46,5 или 40,7 822 139 или 122 70 150 0,17 То же 91 или 88
КВГМ-50 58 1468 172 или 342 70 150 0,138 То же 92,5 или 91
        ПО 150 0,075 То же  
ЗЧМ-60ШМ 70 1491 . 213 70 150 0,17 Каменные или 89 или 87
              бурые угли  
КВГМ-100 116 2710 343 или 684 70 150 0,165 Газ или мазут 92,5 или 91
        ПО 150 0,079    
ПТВМ-180 210 5979 1022 101 150 0,109 Газ 89

Примечание. Первые значения расходов и температур сетевой воды для котлов КВГМ-50 и КВГМ-100 отно­сятся к их работе в качестве основных, вторые в качестве пиковых источников теплоты. Котел ПТВМ-180 пред­назначен для работы только в пиковом режиме.

 

Водогрейные котлы предназначены для получения горячей воды заданных параметров главным образом для отопления. Они ра­ботают по прямоточной схеме с постоянным расходом воды. Кон­ечная температура нагрева определяется условиями поддержа­ния стабильной температуры в жилых и рабочих помещениях, обогреваемых отопительными приборами, через которые и циркули­рует вода, нагретая в водогрейном котле. Поэтому при постоян­ной поверхности отопительных приборов температуру воды, попадаемой в них, повышают при снижении температуры окружа­ющей среды. Обычно воду тепловой сети в котлах подогревают от 70—104 до 150… 170°С. В последнее время имеется тенденция к повышению температуры подогрева воды до 180…200 «С.

Во избежание конденсации водяных паров из уходящих газов и данной с этим наружной коррозии поверхностей нагрева температура воды на входе в агрегат должна быть выше точки росы для продуктов сгорания.

В этом случае температура стенок труб в месте ввода воды также будет не ниже точки росы. Поэтому тем­пература воды на входе не должна быть ниже 60 °С при работе на природном газе, 70 °С при работе на малосернистом мазуте и 110 «С при использовании высокосернистого мазута.

Поскольку в теплосети вода может охлаждаться до тем­пературы ниже 60 °С, перед входом в агрегат к ней подмешивается неко­торое количество уже нагретой в кот­ле (прямой) воды через рециркуляцию (см. рис. 3-10).

Рис.3.10.

1- водогрейный котёл

2- рециркуляционный насос

3- вентиль подмеса (регулирование требуемой температуры сетевой воды)

4- сетевой насос

 

На рис. 6-12 изображен общий вид газомазутного водогрейного котла типа ПТВМ-ЗОМ-4 теплопроизводительностью при работе на мазуте 41 МВт (35 Гкал/ч), хорошо зарекомендовавшего себя эксплуатации. Котел имеет П-образную компоновку и оборудован шестью газомазутными горелками (по три на каждой боковой стене) с мазутными форсунками механического распыливания. Топочная камера котла полностью экранирована трубами диамет­ром 60 мм. Конвективная поверхность нагрева выполнена из горизонтальных U-образных труб диаметром 28 мм. Стены конвектив­ной шахты также экранированы. Облегченная обмуровка котла крепится непосредственно на трубы, опирающиеся в свою оче­редь на каркасную раму. Котлы этого типа, предназначенные для работы на мазуте, оборудуются дробеочистительной установкой.

Воздух на все горелки подается от одного вентилятора с двига­телем мощностью 40 кВт. Тяга осуществляется также одним дымо­сосом с электродвигателем мощностью 95 кВт.

На рис. 6.14 показан общий вид водогрейного газомазутного котла типа КВ-ГМ-50 теплопроизводительностью 58 МВт (50 Гкал/ч), расчетным расходом воды в основном режиме 618 т/ч, в пиковом режиме 1230 т/ч и температурой уходящих газов в основном режиме 140… 180 «С. КПД котла в основном режиме составляет 91,1… 92,6%.

В местах сбора мазута из мазутохранилищ должна поддерживаться температура мазута марки 40 не менее 60’С, марки 100 не менее 80’C. Тогда мазутные насосы работают в режиме циркуляции. Разогрев резервуаров, в которых осуществляется “холодное” хранение мазута, должен осуществляться за двое суток до ввода его в эксплуатацию.

“Холодное” хранение производится при температуре мазута не ниже 10’С.

В системе безопасности водогрейных котлов установлены: предохранительные клапаны – как правило, два, один рабочий, другой контрольный. Но на прямоточных водогрейных котлах при наличии автоматики безопасности они могут не устанавливаться.

В топке устанавливаются такие взрывные предохранительные клапаны, чтобы открывались, как дверцы, но топка не взрывалась.

 

 

Циркуляционная схема котла типа ПТВМ-30М-4

1- фронтовой экран топки; 2- боковые экраны топки; 3- боковые экраны конвективной шахты;

4 – конвективные поверхности; 5 – задний экран конвективной части; 6 – задний экран топки.

 

Блочно-модульные котельные

Блочно-модульная котельная (БМК) предназначена для отопления и горячего водоснабжения жилых домов, больниц, спортивных залов, школ, производственного, административного, культурно-бытового назначения и т.д., имеющих закрытую систему отопления.

Конструкция котельной представляет собой цельнометаллический утепленный корпус с трудносгораемой теплоизоляцией в котором размещено все технологическое оборудование и трубопроводы (рис.3.5.1).

Рис.3.5.1 Разрез блочно модульно котельной

В состав котельного агрегата входят: паровой котел, топка, паронагреватель, водный экономайзер, воздухоподогреватель, обмуровка, каркас с лестницами и площадками, а также арматура и гарнитура.

К вспомогательному оборудованию относятся: тягодутьевые и питающие устройства, оборудование водоподготовки, топливоподачи, а также контрольно-измерительные приборы и системы автоматизации.

Преимущества БМК.

1. Максимальная приближенность БМК к объекту теплоснабжения, что резко сокращает затраты на теплоснабжение.

2. Отсутствие значительных капитальных затрат на строительство здания под котельную.

3. Простое и удобное решение вопроса при децентрализации теплоснабжения.

4. Высокий уровень автоматизации, безопасности, надежности.

5. Полная заводская готовность и комплектация.

6. Быстрый ввод в эксплуатацию.

7. Транспортирование автомобильным и железнодорожным транспортом.

8. Широкий диапазон тепловых мощностей и нагрузок ГВС.

9. Минимальные затраты при монтаже и пуске БМК.

10. Применение различных типов котлов.

Ниже приведено описание газовой блочной котельной БКГ-2,5.

 

 


 


Дата: 2018-12-21, просмотров: 507.