ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ
1. Значение кровообращения для организма.
2. Основные функции кровообращения.
3. Физиологические свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматия).
4. Цикл работы сердца, фазы сердечного цикла.
5. Внешние проявления работы сердца и методы исследования сердечно–сосудистой системы.
6. Регуляция работы сердца.
7. Функции сосудистой системы и основные принципы гемодинамики.
8. Функциональная классификация сосудистой системы.
9. Скорость кровотока в различных участках сосудистой системы.
10. Артериальное давление и факторы, определяющие его величину.
11. Давление в венах и факторы, способствующие венозному возврату.
12. Пульс и его характеристика по основным признакам.
13. Регуляция регионального и системного кровообращения
Кровь может выполнять свою функцию лишь в том случае, если она находится в постоянном движении, а в постоянном движении она может находиться только в результате работы сердца. Благодаря этому клетки и ткани, не имея непосредственного контакта с окружающей средой, могут получать необходимые вещества из межтканевой жидкости и сюда же выделять продукты обмена. Отсюда вытекает, что основное значение и функция кровообращения состоит, прежде всего, в обеспечении и сохранении стабильных гомеостатических констант организма. Сохранение постоянства внутренней среды организма происходит в результате выполнения системой кровообращения следующих основных функций:
1) транспортной, заключающейся в переносе газов (кислорода и углекислого газа) от легких к тканям и от тканей к легким, питательных веществ к органам и тканям, конечных продуктов обмена веществ к органам выделения (почки, кожа, легкие, органы пищеварения), гормонов и физиологически активных веществ к органам – мишеням. Иногда каждую из перечисленных компонентов выделяют и рассматривают как самостоятельную функцию, но правильнее их отнести к одной, а именно к транспортной функции кровообращения.
2) регуляторное, имеется в виду участие кровообращения в гуморальной регуляции функций организма как за счет веществ гормональной, так и метаболической природы.
3) терморегуляторной, т.е. за счет движения крови происходит перераспределение тепла (от внутренних органов, работающих скелетных мышц к другим участкам тела). Несколько «охлажденная» кровь, протекая через гипоталамические структуры мозга, усиливает теплопродукцию. Расширение или сужение сосудов кожи либо усиливает, либо уменьшает теплоотдачу. Следовательно, может изменяться как образование тепла, так и отдача его.
4) Эндокринная функция сердца. Кардиомиоциты предсердий вырабатывают атриопептид, или натрийуретический гормон. Образование этого пептида стимулируется при растяжении предсердий притекающим объемом крови, ионами натрия крови, вазопрессином, а также экстракардиальными нервами сердца. Этот гормон сильно повышает экскрецию почками ионов натрия и хлора путем подавления их реабсорбции в канальцах нефронов, происходит также увеличение клубочковой фильтрации. Атриопептид подавляет секрецию ренина, ингибирует эффекты ангиотензина-II и альдостерона, расслабляет гладкие мышечные клетки мелких сосудов, кишечника.
5) Нагнетательная функция сердца основана на чередовании сокращения (систола) и расслабления (диастола). Во время систолы желудочки выбрасывают кровь в крупные артерии (аорту и легочный ствол). Обратному поступлению крови из этих сосудов в сердце препятствуют клапаны. Во время диастолы желудочков кровь притекает по крупным венам (предшествует систоле желудочков, т.е. в этот период желудочки находятся в диастоле). Сердце сокращается по типу одиночного сокращения (скелетные мышцы — тетанически), что обеспечивает ритмичность и последовательность сокращений разных отделов сердца. Это свойство миокарда (неспособность к тетаническому сокращению) имеет большое значение для нагнетательной функции сердца и обусловлено наличием продолжительной абсолютной рефрактерной фазы, занимающей всю систолу. Тетаническое (длительное) сокращение миокарда препятствовало бы наполнению желудочков кровью и означало фактически остановку сердца в период систолы.
Схема ЭКГ.
ПП — возбуждение правого предсердия; ЛП — возбуждение левого предсердия.
Зубцы обозначают латинскими буквами: P, Q, R, S, T, U. Зубцы, направленные кверху, рассматриваются как положительные, а книзу – как отрицательные. Вольтаж (амплитуда) зубцов определяют от уровня нулевой линии, называемой изоэлектрической, и выражают в миллиметрах или милливольтах. Изоэлектрическая линия соответствует отсутствию разности потенциалов (сегменту Т–Р ЭКГ). Продолжительность зубцов, сегментов и интервалов измеряют на уроне нулевой линии и выражают в секундах. Зубец Р отражает возбуждение предсердий, общая продолжительность этого зубца составляет 0,06–0,11 с. Интервал РQ – время проведения возбуждения от предсердий к желудочкам. Измеряется он от начала зубца Р до начала первого зубца желудочкового комплекса (в норме зубец Q). Этот интервал состоит из зубца Р и сегмента РQ (от конца Р до начала комплекса QRS). Сегмент РQ расположен на нулевой линии и отражает распространение возбуждения по проводящей системе сердца. Нормальная продолжительность интервала PQ варьирует от 0,12 до 0,20 сек. и зависит от частоты сердечных сокращений. Зубцы Q, R, S, T составляют желудочковый комплекс. Зубец Q обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней поверхности желудочков. Зубец R – возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата возбуждением миокарда желудочков завершается к окончанию формирования зубца S. Теперь оба желудочка возбуждены, и сегмент ST находится на изоэлектрической линии, т.к. разность потенциалов отсутствует в системе желудочков. Интервал QRS соответствует распространению возбуждения по миокарду желудочков. Этот интервал измеряется от начала зубца Q до конца зубца S. Продолжительность его колеблется от 0,06 до 0,10 сек. Сегмент ST – отрезок от конца комплекса QRS до начала зубца Т. Этому сегменту соответствует полный охват возбуждением желудочков. Зубец Т соответствует реполяризации желудочков.
Интервал QRST, называемый электрической систолой, измеряется от начала зубца Q до конца зубца Т. Иногда за зубцом Т следует зубец U, он непостоянен, мал и определяется преимущественно в грудных отведениях. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. На ЭКГ обычно не регистрируется предсердный зубец Т (соответствующий реполяризации предсердий), т.к. он совпадает с мощным желудочковым комплексом (QRS) и поглощается им. При полной поперечной блокаде сердца, когда не каждый зубец Р сопровождается желудочковым комплексом, регистрируется предсердный зубец Т (Т – атриум), соответствующий реполяризации предсердий.
Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце, частоты сердечных сокращений, ритмичность возбуждения, экстрасистолию, а также изменения, характерные для той или иной патологии сердца.
ЭКГ отражает изменения величины и направления потенциалов действия миокарда, но не позволяет оценить сократительную-нагнетательную функцию сердца.
ВЕКТОРЭЛЕКТРОКАРДИОГРАФИЯ
Это метод пространственно – количественного исследования электрического поля сердца в процессе кардиоцикла. В основе метода лежит принцип получения фигуры, отображающей изменения величины и направления ЭДС. В связи с тем, что в процессе деполяризации (возбуждения) и реполяризации (восстановления) миокарда предсердий и желудочков возникает ЭДС в виде последовательного ряда моментных векторов, главными из которых являются Р, QRS и Т, то и ВКГ состоит соответственно из петель Р, QRS, Т.
Рис. Элементы нормальной векторкардиограммы
Эти петли ВКГ соответствуют основным зубцам ЭКГ (или комплексу QRS) и имеют соответствующие буквенные обозначения.
Регистрацию ВКГ производят с помощью специальных аппаратов – векторэлектрокардиографов. Анализ ВКГ предусматривает: определение формы петель Р, QRS, Т, направления движения этих петель, пространственное расположение петель, их площади и определение угла расхождения главных (максимальных) векторов петель QRS и Т. У здоровых людей петли Р и Т, как правило, располагаются внутри петли QRS. В патологии происходит существенное изменение формы, направления и величины векторов, меняется расположение петель.
Верхушечный толчок
В момент сокращения сердца в пятом межреберье слева, на 1 см. кнутри от среднеключичной линии ощущается верхушечный толчок. При сокращении желудочков форма сердца приближается к шару, а в момент диастолы – в виде эллипсоида. Сокращение сердца сопровождается уменьшением продольного размера и увеличением поперечного. Уплотненный миокард левого желудочка касается внутренней поверхности грудной стенки, верхушка сердца в момент систолы приподнимается и ударяется о переднюю стенку грудной клетки. Все это вызывает появление верхушечного толчка. В патологии (при гипертрофии сердца, дилятации его) верхушечный толчок смещается влево и служит первым признаком увеличения размеров сердца. Увеличение размеров сердца может быть обусловлено либо чрезмерной и частой физической нагрузкой, например у спортсменов, либо патологическими изменениями в самом сердце и в системе кровообращения (пороки сердца, кардиодистрофия, гипертоническая болезнь, постинфарктное увеличение размеров сердца и т.д.).
Расположение верхушечного толчка можно определить либо визуально, либо пальпаторно. Верхушечный толчок можно также регистрировать. Метод графической регистрации верхушечного толчка называется апексокардиографией. На формирование кривой верхушечного толчка оказывают существенное влияние такие факторы, как изменение внутрисердечного объема в процессе выброса и наполнения, сократимость миокарда, ударный объем. Апексокардиография дает возможность установить ряд признаков, характерных для изменения величины сердца и его основных функциональных проявлений.
Кинетокардиография
Этот метод основан на регистрации и анализе низкочастотных колебаний стенки грудной клетки, вызванных работой сердца. Объем информации при ККГ включает сведения о моментах раскрытия и закрытия клапанов, о направлении, величине перемещения, скорости и ускорении движения сердца в исследуемой зоне
Этот метод в настоящее время почти не применяется, т.к. есть другие более информативные и менее громоздкие методы исследования функции сердца (например, эхокардиография).
Баллистокардиография
Этот метод позволяет исследовать сократительную функцию сердца. Он основан на графической регистрации движений тела человека, связанных с сердечными сокращениями и перемещением крови в крупных сосудах. Эти движения могут быть зарегистрированы с помощью специальных датчиков и усилителей.
Анализ балистокардиограммы (БКГ) позволяет выяснить характер ряда интегральных показателей: силу и координацию сердечных сокращений, объем и скорость систолического изгнания крови, особенности заполнения сердечных полостей во время диастолы. Методы БКГ разделяют на прямые и непрямые. При прямом методе регистрируются непосредственно движения тела человека, при непрямом – движения подвижной платформы, вызванные перемещением тела исследуемого, находящегося на платформе. Для клинических целей используют чаще непрямую БКГ. Или используют комбинированную методику, включающую прямую и непрямую БКГ. Нормальная БКГ представляет собой кривую, состоящую из периодически повторяющихся волн разной амплитуды, продолжительности и направленности. БКГрафия в настоящее время используется редко, т.к. есть более информативные методы (например, эхокардиография)
Динамокардиография
Этот метод отражает перемещение центра тяжести грудной клетки и ударных компонентов работы сердца. В настоящее время также используется крайне редко, поэтому на характеристике этого метода можно и не останавливаться.
Эхокардиография
Это метод визуализации полостей и внутрисердечных структур сердца при помощи ультразвуковых волн, а также метод оценки функционального состояния сердца. Существует несколько принципов работы ультразвуковых приборов. В кардиологии используют в основном следующие:
1. Эхокардиографические приборы, дающие одномерное изображение сердца с разверткой движения его структур во времени — М-метод (motion – движение)
2. Двухмерное изображение сердца, получаемое при линейном перемещении (сканировании) ультразвукового датчика по поверхности грудной клетки в пределах ультразвукого «окна» — В-сканирование.
3. Ультразвуковое секторальное сканирование — двухмерное изображение сердца в реальном масштабе времени. Угол секторального сканирования — от 30 до 90º.
Все ультразвуковые приборы независимо от модели устроены по единому принципу. Ультразвуковой датчик (трансдюссер) — устройство, одновременно посылающее ультразвуковой сигнал и воспринимающий отраженные импульсы. Вся информация подвергается компьютерной обработке и выдается в виде цифровых данных, а также изображение с экрана регистрируется поляроидной камерой фотоаппаратом. В настоящее время используют также аппаратуру, работающую на принципе эффекта Доплера. Исследование проводят в положении пациента на спине или на левом боку. Исследование начинают с опознавания какого- либо участка сердца (например, аорты или створки митрального клапана). Используют обычно 4 стандартных позиции датчика. Используя разные позиции датчика, можно последовательно исследовать разные участки сердца. Когда исследуется полость левого желудочка, то оценивают размеры и объемы в разные периоды сердечного цикла, толщину и массу миокарда и показателей, характеризующих его сократительную функцию. Как правило, определяют конечно-диастолический, конечно-систолический размер (объем).
Конечно-диастолический объем (КДО) показывает объем левого желудочка в момент максимальной диастолы. В норме у взрослого человека этот объем составляет около 120-130 мл.
Конечно-систолический объем (КСО) показывает объем крови, оставшийся в левом желудочке после систолы, т.е. после изгнания (выброса) крови в аорту. Эта величина в нашем примере может составить около 50-60 мл.
Разница между конечно-диастолическим и конечно-систолическим объемами (130-60 = 70 мл) составляет ударный или систолический объем крови (УО или СО). Он в норме составляет около 70 мл с индивидуальными колебаниями в зависимости от степени тренированности организма, пола, возраста, функционального состояния сердца. При наличии патологических изменений в сердце величина его, как правило, уменьшается, а у спортсменов систолический объем выше 70 мл.
Для расчета объема полости левого желудочка предложены специальные формулы. Важным показателем функционального состояния сердца является фракция изгнания или фракция выброса.
Фракция выброса—это отношение ударного объема к конечно-диастолическому объему (КДО). Величина эта определяется по формуле ФВ = УО/КДО · (100%). У здоровых лиц ФВ превышает 50%.
Для определения минутного объем сердца величину ударного объема умножают на частоту сердечных сокращений. Эхокардиография позволяет оценить также функциональные параметры остальных отделов сердца, состояние клапанного аппарата, толщину стенок различных участков миокарда, сократительную активность его и т.д.
ЗВУКОВЫЕ ЯВЛЕНИЯ
Работа сердца сопровождается возникновением звуков — тонов сердца или шумов (при патологических изменениях). С позиций клинической практики следует различать следующие основные категории тонов сердца: обязательные или облигатные, такими являются 1 и 2 тоны; факультативные — 3 и 4 тоны и патологические (экстратоны).
I тон по происхождению является систолическим, т.к. выслушивается во время систолы и многокомпонентным. В формировании этого тона принимают участие атриовентрикулярные клапаны, сокращение мышц желудочков и сосочковых мышц, натяжение сухожильных нитей, но наибольший вклад вносят все-таки клапаны. В момент систолы желудочков давление в них повышается, и это приводит к закрытию атриовентрикулярных клапанов. Некоторые ученые определенное значение в возникновении I тона придают открытию полулунных клапанов аорты и легочной артерии. Все компоненты I тона можно зафиксировать только при фонокардиографии.
I тон выслушивается как короткий и достаточно интенсивный звук по всей сердечной области, однако оптимально он выражен в области верхушки сердца и проекции митрального клапана
II тон выслушивается по всей сердечной области, но оптимально — на основании сердца, во втором межреберье слева и справа от грудины. Здесь интенсивность II тона больше интенсивности I тона. II тон является чисто клапанным и возникает при закрытии аортального клапана и клапана легочной артерии. Сопоставлению интенсивности II тона во втором межреберье справа (на аорте) и слева (на легочной артерии) при аускультации придается определенное диагностическое значение. При усилении II тона справа, т.е. на аорте говорят об акценте, что, по мнению клиницистов, свидетельствует о повышении давления в аорте. Однако фонокардиографический анализ показал, что в норме всегда аортальный компонент II тона значительно интенсивнее легочного компонента. Это объясняется тем, что клапан аорты закрывается при гораздо большем диастолическом давлении, чем клапан легочной артерии. Поэтому, по существу и слева от грудины лучше выслушивается звук закрытия аортального клапана, чем звук закрытия клапана легочной артерии. Фонокардиографически можно различить аортальный и легочный компоненты II-го тона. На фонокардиограмме аортальный компонент 2 тона возникает чуть раньше (в связи с более ранним окончанием систолы левого желудочка); амплитуда его в 1,5-2 раза больше легочного компонента 2 тона.
3 тон при аускультации воспринимается как слабый и глухой (низкочастотный) звук. Этот тон не всегда выслушивается. Он лучше выслушивается у детей и у людей астенического телосложения (на верхушке сердца в положении лежа), а также регистрируется при фонокардиографии. Возникновение нормального 3 тона связано с колебаниями мышечной стенки желудочков в момент быстрого диастолического наполнения.
4V тон получил название «предсердного» тона, так как возникновение его многие исследователи связывают с сокращением предсердий. Этот тон редко выслушивается, так как имеет малую интенсивность, но регистрируется на фонокардиограмме (обычно после зубца Р ЭКГ).
МЕТОДАМИ ИССЛЕДОВАНИЯ ЗВУКОВЫХ ЯВЛЕНИЙ СЕРДЦА являются аускультация и фонокардиография, т.е. запись тонов и шумов сердца (более подробно с этими методами можно ознакомиться в учебнике, а методом аускультации — на практических занятиях).
МЕТОДЫ ИССЛЕДОВАНИЯ СОСУДИСТОЙ СИСТЕМЫ.
СФИГМОГРАФИЯ — регистрация движения артериальной стенки, возникающей в результате повышения давления в аорте в момент систолы левого желудочка. Степень деформации артериальной стенки зависит от свойств сосуда, уровня давления и кровенаполнения их. Этот метод позволяет получить разнообразную информацию о состоянии артериальных сосудов и работы сердца. Сфигмограмма состоит из следующих основных компонентов: анакроты, катакроты, инцизуры и дикротического подъема. Анакрота или восходящая часть кривой. Она соответствует систоле желудочков. Катакрота соответствует диастоле. Самая низкая часть инцизуры отражает момент полного закрытия полулунных клапанов аорты. Дикротический подъем — это колебание, возникающее в результате удара крови об аортальный клапан и эффекта отдачи от него, т.к. клапан обладает эластичностью.
Нормальная артериальная сфигмограмма сонной артерии (а), бедренной артерии (б) и артерии стопы (в). Объяснение в тексте.
Схематическое изображение нормальной сфигмограммы
1 –анакрота, 2 – катакрота, 3 – инцизура, 4 –дикротический подъем
Сфигмография, наряду с пальпаторным методом исследования пульса, дает возможность оценить основные показатели пульса (частоту, ритмичность, наполнение, напряжение, быстроту, а при регистрации пульса с 2-х симметричных участков — симметричность пульса). Различают сфигмограммы центрального и периферического пульса. Кривые пульса сонной и подключичной артерий несколько отличаются от кривых пульса периферических артерий (лучевой, бедренной, артерии стопы). В сфигмограмме центрального пульса нередко отсутствуют волны диастолического происхождения (инцизура и дикрота). При анализе СФГ учитывают их форму, длительность анакротического подъема, соотношение амплитуды основной и дикротической волны. У здоровых людей амплитуда дикротической волны составляет около половины максимальной высоты кривой и снижается при патологии. Характерные особенности имеет СФГ при недостаточности аортальных клапанов. Наблюдается быстрый высокий подъем главной волны, ее раздвоение на верхушке, дикротическая волна выражена слабо, инцизура может отсутствовать. Все эти изменения обусловлены тем, что в момент диастолы левого желудочка кровь из аорты частично поступает в желудочек, т.к. клапаны не полностью закрывают сообщение между левым желудочком и аортой. Если имеется стеноз устья аорты, то анакрота нарастает медленно, на ней и ее верхушке регистрируются дополнительные колебания. Они обусловлены вибрацией стенок аорты и получили название «петушиного гребня».
Скорость распространеия пульсовой волны (СРПВ)
Этот показатель дает возможность характеризовать упругое напряжение сосудистых стенок и является одним из наиболее надежных показателей упруго- вязкого состояния сосудов. СПВР зависит от силы сокращения левого желудочка и величины артериального давления и, естественно, от состояния стенок артерий. СПВР оценивается при синхронной записи сфигмограмм с двух и более точек сосудистой системы. Она определяется по формуле:
С = L:t,
где С – СРПВ; L – истинная длина сосуда;
t – время запаздывания пульса на периферии.
Этот показатель на различных участках сосудистой системы у одного и того же исследуемого может быть разным. СРПВ выше в артериях с плотной сосудистой стенкой и высоким давлением крови.
Классическая методика предусматривает одновременную запись сфигмограмм сонной и бедренной артерий и позволяет определить СРПВ по сосудам эластического типа (по аорте). Пульсовые датчики устанавливают в области отчетливой пульсации сонной артерии и в середине пупартовой связки. Расчет СРПВ производят по вышеописанной формуле. Длину аорты измеряют сантиметровой лентой по проекции сосуда на поверхность тела. Измеряют расстояние от датчика сонной артерии до яремной вырезки грудины, от этой точки до пупка и от пупка до места установки датчика на бедренной артерии. Полученная таким способом величина отражает СРПВ по существу в нисходящей аорте и в норме колеблется от 450 до 800 см/с. СРПВ в аорте существенно зависит от возраста: она тем выше, чем больше возраст. Отклонения на ±80 см/с считаются нормальными.
СРПВ увеличиваетя при атеросклерозе аорты, гипертонической болезни, уплотнении сосудистой стенки. СРПВ измеряется также в других областях сосудистой системы
Рефлекторная регуляция.
Какая бы нервно-рефлекторная форма (условно- или безусловно рефлекторная) регуляции работы сердца не осуществлялась, а эфферентными (центробежными) нервами, изменяющими деятельность сердца, являются блуждающие и симпатические нервы. По этим нервам из ЦНС к сердцу поступают импульсы и вызывают либо активацию, либо угнетение работы сердца. Эфферентные нервы сердца, как и все вегетативные нервы, состоят из 2 нейронов. Тела первых нейронов блуждающих нервов расположены в продолговатом мозге. Отростки этих нейронов заканчиваются в интрамуральных ганглиях сердца и являются преганглионарными нейронами. В интрамуральных ганглиях находятся вторые нейроны, от которых постганглионарные нейроны идут к проводящей системе сердца и коронарным сосудам. Правый блуждающий нерв преимущественно иннервирует сино-атриальный узел и его влияние проявляется в уменьшении частоты сердечных сокращений. Левый блуждающий нерв в основном иннервирует атрио-вентрикулярный узел и уменьшает скорость проведения импульса через этот узел. Большинство исследователей считает, что рабочий миокард желудочков не иннервируется блуждающими нервами. Однако есть и такие работы, где утверждается, что эти нервы иннервируют и миокард желудочков.
Первые нейроны симпатического отдела нервной системы, участвующие в передаче импульсов из ЦНС к сердцу, расположены в боковых рогах пяти верхних грудных сегментов спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпатических узлах. В этих узлах расположены вторые нейроны, длинные постгаглионарные отростки которых идут к сердцу. Большая часть симпатических нервов идет к сердцу от звездчатого узла. Симпатические нервы, в отличие от блуждающих нервов, иннервируют все участки сердца (как проводящую систему сердца, так и рабочий миокард, коронарные сосуды и другие структуры сердца). Влияние блуждающих нервов на сердце впервые изучили братья Вебер (1845). Ими было установлено тормозящее (вплоть до остановки) влияние раздражения блуждающих нервов на сердце. До открытия братьями Вебер тормозящего влияния блуждающего нерва на сердце были известны лишь возбуждающие влияния других нервов на органы. Это был первый факт обнаружения тормозящего влияния нервов.
Под влиянием центробежных нервов сердца (вагуса и симпатикуса) изменяется частота (хронотропное влияние), сила (инотропное влияние) сердечных сокращений, возбудимость (батмотропное влияние) и проводимость (дромотропное влияние).
Блуждающие нервы оказывают отрицательное хроно-, ино-, батмо- и дромотропное влияние, т.е. уменьшается частота, сила, возбудимость и проводимость. Если правый блуждающий нерв преимущественно влияет на сино-атриальный узел и вызывает отрицательный хронотропный эффект, то левый блуждающий нерв преимущественно влияет на атриовентрикулярный узел. Этот нерв обладает выраженным влиянием на автоматизм, возбудимость и проводимость атрио-вентрикулярного узла.
Симпатические нервы оказывают положительное влияние, т.е. увеличивают частоту, силу, возбудимость и проводимость. Эти факты впервые были получены братьями Цион (1867). В 80-х годах 19 века И.П.Павловым было показано, что в составе симпатических нервов сердца, кроме увеличивающих частоту сердечных сокращений, имеются волокна, раздражение которых приводит только к увеличению силы сокращения (инотропное влияние). Павлов эти нервы назвал трофическими, а затем они получили название «усиливающий нерв Павлова». В условиях эксперимента раздражение усиливающего симпатического нервного волокна нормализует сократимость сердца при таком резком нарушении этой функции как альтернация сердечных сокращений. Явления альтернации проявляются в том, что одно «нормальное» сокращение сердца чередуется со «слабым» сокращением (при этом сила сокращения настолько слаба, что кровь в аорту не поступает). «Усиливающий нерв» не только увеличивает силу сокращения, но и устраняет альтернацию и восстанавливает силу сокращения до нормальных величин. Раздражение ваго-симпатического ствола на шее (у теплокровных животных блуждающий и симпатический нервы расположены вместе) сопровождается вначале вагусным эффектом, а после прекращения раздражения проявляется симпатический эффект (симпатическое последействие).
При длительном раздражении блуждающего нерва отмечается ускользание сердца из–под влияния блуждающего нерва. Такой же эффект может возникнуть при применении больших доз β-адреноблокаторов и резко выраженной брадикардии. Суть этих изменений заключается в том, что частота сердечных сокращений (несмотря на продолжающееся раздражение блуждающего нерва в эксперименте) начинает возрастать, хотя и остается замедленным по сравнению с контролем. Механизм возникновения феномена «ускользания» до конца не выяснен, но многие исследователи считают, что это является проявлением компенсаторного усиления симпатических влияний на сердце. Не исключено, однако, что при этом происходит изменение проницаемости мембраны кардиомиоцитов для ионов калия и натрия.
Передача возбуждения с блуждающего и симпатического нервов происходит за счет химических веществ (медиаторов или посредников), выделяющихся на окончаниях этих нервов. На окончаниях блуждающих нервов выделяется ацетилхолин, а на окончаниях симпатических нервов — норадреналин. Химическая передача возбуждения с вагуса на сердце была установлена Леви (1921). Он раздражал нерв изолированного сердца лягушки, а затем жидкость из этого сердца переносил в другое сердце (которое не раздражалось), в результате чего работа второго сердца изменялась также, как и первого. Что лежит в основе механизма действия медиаторов? Считается, что под влиянием ацетилхолина происходит повышение проницаемости возбудимых мембран для калия, а это препятствует деполяризации. Медленная диастолическая деполяризация в сино-атриальном узле запаздывает, укорачивается потенциал действия миокарда предсердий. Подобные же изменения происходят в атриовентрикулярном узле.
В результате этих изменений проявляется отрицательное хроно-, ино-, батмо-, дромотропное действие ацетилхолина (и блуждающего нерва).
Симпатические нервы и их медиатор норадреналин усиливают медленный входящий кальциевый ток (т.е. повышают кальциевую проницаемость). Это приводит к усилению сокращений сердца. Норадреналин (а также гормон мозгового вещества надпочечников адреналин) действуют на α и β-адренорецепторы. В сердце эти вещества действуют преимущественно на β-адренорецепторы.
Таким образом, любые влияния ЦНС (т.е. рефлекторные) на сердце происходят через вышеописанные эфферентные нервы (поэтому при изложении соответствующих видов регуляции эти вопросы повторно освещаться не будут).
ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ
СКОРОСТЬ КРОВОТОКА
Различают линейную и объемную скорость кровотока.
Линейная скорость отражает скорость продвижения частиц крови вдоль сосуда в единицу времени. Она различна для частиц крови, продвигающихся в центре потока и у сосудистой стенки. В центре сосуда она максимальна, а около стенки сосуда минимальна, т.к. велико трение частиц крови о стенку. Линейная скорость кровотока снижается от аорты к капиллярам, а затем вновь возрастает в венах. Она составляет в: аорте около 50 см/с, крупных артериях 40-45, капиллярах — 0,05-0,07 см/с, венах — 10-25 см/с, полых венах — 30-33 см/с. Линейная скорость кровотока зависит от суммарного просвета кровеносных сосудов. Чем больше суммарный просвет, тем меньше скорость кровотока. Наименьшая скорость кровотока в капиллярах. Это объясняется тем, что суммарный просвет капилляров примерно в 500-600 раз больше просвета аорты. Медленный ток крови в капиллярах обеспечивает нормальные обменные процессы между кровью и тканями. В венах скорость кровотока вновь возрастает, так как при слиянии вен суммарный просвет их уменьшается (например, зависимость скорости течения воды от ширины русла реки очень четко прослеживается. При одном и том же объеме воды через узкое русло реки она течет быстро, а через широкое — медленно). Линейная скорость кровотока в аорте и легочной артерии увеличивается в момент систолы и становится несколько ниже в момент диастолы сердца. В капиллярах и венах скорость постоянна.
Линейная скорость кровотока неодинакова в толще текущей крови, т.к. в физиологческих условиях наблюдается ламинарное, или слоистое, течение крови. Все частицы крови перемещаются только параллельно оси сосуда. Слой, прилегающий к стенке сосуда как бы «прилипает» к ней и остается неподвижным. По этому слою скользит второй слой, по нему третий и т.д. Максимум скорости наблюдается в центре сосуда. Особенностью ламинарного кровотока является и то, что чем крупнее частицы крови, тем ближе они располагаются к оси сосуда и имеют наибольшую скорость кровотока. В центральном (осевом потоке) в основном располагаются эритроциты, образуя компактный цилиндр внутри оболочки из плазмы.
При определенных условиях ламинарное течение может превратиться в турбулентное. Для этого вида течения характерны завихрения, а течение крови происходит не только параллельно оси сосуда, но и перпендикулярно. Эти завихрения увеличивают внутреннее трение, что приводит к некоторому снижению градиента давления. Локальные завихрения могут быть у разветвления сосудов. В период изгнания крови из желудочков в аорту и легочную артерию наблюдается физиологическое турбулентное движение крови в этих сосудах. Принято считать, что в предсердиях происходит также турбулентное движение крови. Такое движение, по-видимому, необходимо для перемешивания (в частности левом предсердии) и равноменрного распределения оксигенированной крови.
Объемная скорость кровотока — показатель, характеризующий перемещение определенного объема крови через поперечное сечение сосуда в единицу времени (выражается в мл/с). Объем крови, протекающий в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаковый. Отток крови от сердца соответствует ее притоку. Стало быть, объем крови, протекающий в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, одинаков (при нарушении этого явления может наблюдаться застой в каких-то отделах сосудистой системы). Это, однако, не значит, что региональный (органный) кровоток всегда постоянен. При повышении активности органа (например, мышц при физической нагрузке) объемная скорость кровотока может многократно увеличиться. Увеличение органного кровотока обеспечивается как за счет перераспределения, так и за счет увеличения минутного объема крови.
СОПРОТИВЛЕНИЕ КРОВОТОКУ
Многие закономерности течения крови по сосудам можно объяснить базируясь на основных законах гидродинамики, согласно которым, количество жидкости (Q), протекающее через любую трубку, прямо пропорционально разности давлений в начале (Р1) и в конце (Р2) трубки и обратно пропорционально сопротивлению (R) току жидкости. Применительно к кровеносным сосудам следует иметь в виду, что вместе впадения полых вен в сердце давление близко к нулю и уравнение будет выглядеть так: Q = P:R, где Q — количество крови, выброшенное сердцем в сосуды в 1 минуту; Р – величина среднего давления в аорте, R – величина сосудистого сопротивления. Давление в аорте (Р) и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычисляют периферическое сопротивление, которое является важнейшим показателем состояния сосудистой системы. Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Теоретически можно было бы предполагать, что наибольшее сопротивление должны были бы создавать капилляры, т.к. они имеют наименьший диаметр (5-7 мкм), а суммарная их длина составляет около 100.000 км (т.е. 3 раза можно обогнуть землю по экватору). Фактически суммарное сопротивление капилляров меньше, чем артериол. Основное сопротивление току крови возникает в артериолах. Это сосуды сопротивления или резистивные сосуды. Большое сопротивление в артериолах объясняется тем, что они имеют толстый слой циркулярно расположенных мышц. Сокращение этих мышц может существенно повысить сопротивление кровотоку и привести к значительному повышению системного артериального давления, а расширение этих сосудов сопровождается снижением артериального давления. Артериолы являются основным регулятором уровня общего артериального давления. И.М.Сеченов назвал их «кранами сердечно-сосудистой системы». .Изменение органного сопротивления и на продвижение крови по артериолам и капиллярам тратится 85% энергии, затраченной сердцем на изгнание крови.
Гемодинамическое сопротивление зависит также от вязкости крови, т.е. от трения между слоями жидкости и между жидкостью и стенками сосудов. Вязкость часто выражают в относительных единицах, принимая вязкость воды за 1. Вязкость крови составляет 3-5 (плазмы — 1,9-2,3) относительных единиц, она преимущественно зависит от форменных элементов крови. При низкой скорости кровотока вязкость увеличивается, а при значительном снижения скорости вязкость возрасает до 1000 относительных единиц. В физиологических условиях эти эффекты могут проявляться лишь в очень мелких сосудах и вязкость может возрасать до 10 относит. единиц. В патологии уменьшение скорости кровотока может сопровождаться существенным повышением вязкости и объясняется это обратимой агрегацией эритроциов, которые образуют скопления в виде монетных столбиков.
А) Регуляция регионального кровообращения
Приспособление местного кровотока к функциональным потребностям органов обеспечивается главным образом за счет изменения сопротивления кровотоку. Решающее значение при этом имеет изменение просвета сосудов (по сравнению с изменением давления). Региональный кровоток в большей степени изменяется в тех органах, функциональные потребности которых значительно варьируют (скелетные мышцы, желудочно-кишечный тракт, печень). В таких жизенно важных органах, как головной мозг и почки, потребности которых всегда высоки, кровоток поддерживается на почти постоянном уровне за счет специальных регуляторных механизмов.
Приспособительные изменения местного кровотока обусловлены как локальными механизмами, так и нервными и гуморальными факторами.
Метаболическая ауторегуляция периферического кровообращеия осуществляется за счет веществ, образующихся в процессе метаболизма. Чаще всего вещества местной метаболической природы оказывают сосудорасширяющее влияние. Они, как правило, доминируют над нервными сосудосуживающими эффектами, а в некоторых случах их полностью подавляют.
Недостаток кислорода приводит к расширению сосудов. При усиленном обмене веществ, связанном с интенсификацией функции, снижается парциальое давление кислорода в органе и это сопровождается снижением тонуса артериол и увеличением объемной скорости кровотока через данный орган.
Продукты метаболизма. Местное повышение парциального давления углекислого газа и повышение концентрации водородных ионов приводит к расширению сосудов. Молочная кислота, образующаяся в больших количествах при интенсивной мышечой работе, оказывает сосудорасширяющий эффект, обусловленный изменением рН. Сильное сосудорасширяющее влияние оказывают АТФ, АДФ, АМФ и аденозин. В работающих мышцах сосудорасширяющее действие оказывают также другие метаботлиты, а также изменение внеклеточной концентрации осмотически активных веществ (например, калия), т.к. такие вещества наиболее быстро освобождаются из работающих мышц.
Миогенная ауторегуляция. Некоторые сосуды могут поддерживать постоянную объемную скорость кровотока при колебаниях давления в сосудах. Миогенная ауторегуляция обусловлена сокращением гладких мышц сосудов при повышении давления и расслаблением их при понижении давления. Такая ауторегуляция особенно хорошо выражена в почечных сосудах, несколько меньше она выражена в сосудах головного мозга, сердца, печени, кишечника и скелетных мышц.
Нервная регулция регионального кровотока. Нервная регуляция просвета кровеносных сосудов осуществляется вегетативной нервной системой. Сосудодвигательные нервы относятся в основном к симпатическому отделу и лишь в некоторых органах участвуют в изменении просвета сосудов парасимпатические нервы. Основная часть постганглионарных симпатических волокон выделяет медиатор норадреналин (адренергические волокна), но есть и холинергические симпатические (сосудорасширяющие) волокна. Степень вазоконстрикции сосудов под влиянием симпатических нервов зависит от частоты импульсов, поступающих по ним к сосудам. Симпатические нервы обильно иннервируют сосуды почек, органов брюшной полости (чревная область), кожи и в меньшей степени скелетные мышцы и сосуды головного мозга. Уменьшение импульсов сопровождается дилатацией сосудов. Вазодилатация ограничивается базальным тонусом, который в свою очередь зависит от активности мышц сосудов, т.е. под базальным тонусом понимают длительное поддержание активности гладкомышечных образований сосудов при отсутствии нервных воздействий. Нервные и гуморальные влияния изменяют тонус сосудов как в сторону повышения его, так и в сторону понижеия. Сужение сосудов приводит к уменьшению регионарного (или органного) кровотока, а расширение их сопровождается увеличением объемного кровотока. Симпатические сосудорасширщие (холинергические) волокна в покое не посылают импульсы к сосудам, они возбуждаются при эмоциональных реакциях – тревоге, защите, страхе или ярости. Это сопровождается расширением сосудов скелетных мышц, а мышечная активность в последующем приводит к образованию продуктов метаболизма и это поддерживает вазодилятаторный эффект.
Парасимпатические холинергические сосудорасширяющие волокна имеют ограниченное распространение. Они оказывают вазодилятацию сосудов наружных половых органов при половом возбуждении, возможно расширяяют сосуды органов пищеварения при усилении секреции в них, хотя принято считать, что вазодилятация в желудочно-кишечном тракте происходит под влиянием кининов.
А) Условно-рефлекторная регуляция.
Эта форма регуляции работы сердца и артериального давления имеет индивидуальный, приобретенный и временный характер. По механизму выработки рефлексов они могут быть натуральными (естественными) и искусственными (выработанные в лабораторных условиях). За счет условных рефлексов организм готовится к реальным условиям деятельности. Например, стартовый рефлекс, проявление которого заключается в том, что до начала соревновательной (или иной физической) нагрузки повышается АД, учащается и усиливается работа сердца. Условным раздражителем в данном случае является сама обстановка, т.е. раздражитель имеет комплексный характер и включает ряд раздражителей подготовительного периода, являющихся сигналом предстоящей физической нагрузки. К этой же категории условных рефлексов относится изменение АД и работы сердца перед экзаменом, перед выполнением какой-либо сложной и ответственной задачи.
Искусственные условные рефлексы вырабатываются в лабораторных условиях при сочетании условного раздражителя (звонок, свет и др.) с безусловным раздражителем (подкрепление: например боль, физическая нагрузка в третбане и т.д). Условно-рефлекторные сигналы поступают в ЦНС через разные органы чувств и затем они из коры больших полушарий переключаются на гипоталамические, бульбарные и спинномозговые центры и по вегетативным нервам идут к сосудам (повышают или понижают их тонус) и к сердцу (усиливают или ослабляют работу его).
Б) Безусловно–рефлекторная регуляция
1) Рефлексы с барорецепторов. В стенках крупных артерий расположены многочисленные баро- или прессорецепторы, которые возбуждаются при растяжении стенки сосудов. К важнейшим сосудистым рефлексогенным зонам относятся дуга аорты и каротидные синусы. Подробное описание расположения рецепторов и афферентных путей, несущих импульсы в ЦНС, приведено выше в разделе «Регуляция работы сердца». Афферентные импульсы от барорецепторов поступают к кардиоингибиторному и сосудодвигательному центрам продолговатого мозга. Эти импульсы оказывают тормозное влияние на сосудосуживающие центры, в результате чего снижается тонус симпатических сосудосуживающих волокон и расширяются сосуды, а также уменьшается частота и сила сердечных сокращений и все это приводит к снижению АД. При падении давления в сосудах импульсация от барорецепторов уменьшается, и развиваются обратные процессы, приводящие в конечном итоге к повышению давления. Этот гомеостатический механизм саморегуляции АД сохраняет относительное постоянство АД. Повышение АД в момент систолы сопровождается раздражением барорецепторов и это приводит к рефлекторному снижению АД, а в момент диастолы давление в аорте и каротидном синусе становится ниже, импульсация уменьшается или прекращается (по нервам Циона-Людвига и Геринга), что приводит к возбуждению вазоконстрикторного отдела сосудодвигательного центра и к повышению АД. Такая постоянная саморегуляция является важнейшим условием сохранения АД на стабильном уровне. При эпизодическом повышении АД в момент физической работы, психо-эмоциональном напряжении, гипоксии и т.д. барорецепторный рефлекс оказывается временно заторможенным и АД в момент действия этих воздействии обычно повышается (это имеет приспособительное, адаптивное значение), но после прекращения этих воздействий АД сравнительно быстро нормализуется. В патологии (при гипертонической болезни и гипертензивных состояниях иного происхождения) барорецепторный рефлекс «не срабатывает» и АД остается на высоком уровне. Длительное повышение АД, как правило, приводит к адаптации барорецепторов к высокому давлению и они не реагируют на повышенное давление. Кроме того, по-видимому, происходит угнетение в центрах, вызывающих вазодилятаторный эффект.
2) Рефлексы с рецепторов сердца. В предсердиях располагаются рецепторы растяжения (механорецепторы), они 2-х типов: А-типа, которые возбуждаются при сокращении предсердий и рецепторы В-типа, которые возбуждаются в конце систолы желудочков, т.е. на пассивное растяжение предсердий, т.к. при систоле желудочков происходит некоторое увеличение давления в предсердиях. Импульсы от рецепторов предсердий поступают в сосудодвигательный центр по чувствительным волокнам блуждающего нерва. Возбуждение β-рецепторов в основном оказывает такое же влияние на АД, как и раздражение сосудистых барорецепторов (угнетает симпатоактивирующие и активирует симпатоингибирующие механизмы), но при этом имеет место сосудосуживающее влияние на почечные сосуды и меняет почечную экскрецию.
Рецепторы предсердий, а также рецепторы у впадения полых вен в правое предсердие играют важную роль в регуляции внутрисосудистого объема крови за счет рефлекторного гипоталамического влияния на секрецию вазопрессина (АДГ).
Сигналы от А-рецепторов повышают тонус симпатических нервов, в результате чего возникает тахикардия. В эксперименте этот эффект можно воспроизвести при быстром введении в кровоток большого объема жидкости, что естественно приводит к увеличению венозного возврата и возникновению рефлекса Бейнбриджа.
В желудочках также имеются рецепторы растяжения, импульсы от них идут по чувствительным волокнам блуждающего нерва и через бульбарные кардиоингибирующие центры оказывает отрицательный инотропный эффект на сердце и вазодилятацию.
Рефлексы с артериальных хеморецепторов (с каротидного синуса и дуги аорты ) возникают при снижении парциального давления кислорода и повышении парциального давления углекислого газа или увеличении концентрации водородных ионов. Возбуждение хеморецепторов сосудов сопровождается брадикардией и сужением сосудов, повышается АД, так как вазоконстрикция оказывается более выраженной, чем уменьшение минутного объема крови. Однако прямое влияние гипоксии на сосуды может вызвать противоположный эффект.
Все вышеприведенные рефлекторные механизмы регуляции некоторые авторы (Учебник физиологии под редакцией Р.Шмидта и Г.Тевса) относят к регуляторным механизмам кратковременного действия. Из этого постулата можно допустить, что как – будто после проявления того или иного регуляторного гемодинамического эффекта эти рефлексы больше не проявляются. Напротив, перечисленные рефлексы постоянно присутствуют и обеспечивают гомеостатичекую регуляцию АД и системной гемодинамики.
Правильнее было бы говорить не о «механизмах кратковременного действия», а о быстро реагирующих компонентах регуляторных механизмов
ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ
1. Значение кровообращения для организма.
2. Основные функции кровообращения.
3. Физиологические свойства сердечной мышцы (возбудимость, проводимость, сократимость, автоматия).
4. Цикл работы сердца, фазы сердечного цикла.
5. Внешние проявления работы сердца и методы исследования сердечно–сосудистой системы.
6. Регуляция работы сердца.
7. Функции сосудистой системы и основные принципы гемодинамики.
8. Функциональная классификация сосудистой системы.
9. Скорость кровотока в различных участках сосудистой системы.
10. Артериальное давление и факторы, определяющие его величину.
11. Давление в венах и факторы, способствующие венозному возврату.
12. Пульс и его характеристика по основным признакам.
13. Регуляция регионального и системного кровообращения
Кровь может выполнять свою функцию лишь в том случае, если она находится в постоянном движении, а в постоянном движении она может находиться только в результате работы сердца. Благодаря этому клетки и ткани, не имея непосредственного контакта с окружающей средой, могут получать необходимые вещества из межтканевой жидкости и сюда же выделять продукты обмена. Отсюда вытекает, что основное значение и функция кровообращения состоит, прежде всего, в обеспечении и сохранении стабильных гомеостатических констант организма. Сохранение постоянства внутренней среды организма происходит в результате выполнения системой кровообращения следующих основных функций:
1) транспортной, заключающейся в переносе газов (кислорода и углекислого газа) от легких к тканям и от тканей к легким, питательных веществ к органам и тканям, конечных продуктов обмена веществ к органам выделения (почки, кожа, легкие, органы пищеварения), гормонов и физиологически активных веществ к органам – мишеням. Иногда каждую из перечисленных компонентов выделяют и рассматривают как самостоятельную функцию, но правильнее их отнести к одной, а именно к транспортной функции кровообращения.
2) регуляторное, имеется в виду участие кровообращения в гуморальной регуляции функций организма как за счет веществ гормональной, так и метаболической природы.
3) терморегуляторной, т.е. за счет движения крови происходит перераспределение тепла (от внутренних органов, работающих скелетных мышц к другим участкам тела). Несколько «охлажденная» кровь, протекая через гипоталамические структуры мозга, усиливает теплопродукцию. Расширение или сужение сосудов кожи либо усиливает, либо уменьшает теплоотдачу. Следовательно, может изменяться как образование тепла, так и отдача его.
4) Эндокринная функция сердца. Кардиомиоциты предсердий вырабатывают атриопептид, или натрийуретический гормон. Образование этого пептида стимулируется при растяжении предсердий притекающим объемом крови, ионами натрия крови, вазопрессином, а также экстракардиальными нервами сердца. Этот гормон сильно повышает экскрецию почками ионов натрия и хлора путем подавления их реабсорбции в канальцах нефронов, происходит также увеличение клубочковой фильтрации. Атриопептид подавляет секрецию ренина, ингибирует эффекты ангиотензина-II и альдостерона, расслабляет гладкие мышечные клетки мелких сосудов, кишечника.
5) Нагнетательная функция сердца основана на чередовании сокращения (систола) и расслабления (диастола). Во время систолы желудочки выбрасывают кровь в крупные артерии (аорту и легочный ствол). Обратному поступлению крови из этих сосудов в сердце препятствуют клапаны. Во время диастолы желудочков кровь притекает по крупным венам (предшествует систоле желудочков, т.е. в этот период желудочки находятся в диастоле). Сердце сокращается по типу одиночного сокращения (скелетные мышцы — тетанически), что обеспечивает ритмичность и последовательность сокращений разных отделов сердца. Это свойство миокарда (неспособность к тетаническому сокращению) имеет большое значение для нагнетательной функции сердца и обусловлено наличием продолжительной абсолютной рефрактерной фазы, занимающей всю систолу. Тетаническое (длительное) сокращение миокарда препятствовало бы наполнению желудочков кровью и означало фактически остановку сердца в период систолы.
Физиологические свойства сердечной мышцы.
Сердечная мышца обладает следующими физиологическими свойствами: возбудимостью, проводимостью, сократимостью и автоматией.
Возбудимость – это способность (или свойство) реагировать на раздражение, т.е. возбуждаться. Это свойство характерно для всех возбудимых тканей (нервов, мышц, железистых клеток), но разные ткани обладают разной возбудимостью (этот вопрос более подробно рассматривается в разделе «физиология возбудимых тканей»). Любая возбудимая ткань при возбуждении меняет свою возбудимость и имеет следующие фазы: абсолютная рефрактерность (отсутствие возбудимости), относительная рефрактерность (возбудимость ниже нормы), супернормальность или экзальтация (повышенная возбудимость). Продолжительность этих фаз у разных тканей разная, и имеет, как правило, важное функциональное назначение. Так, у нервов и скелетных мышц эти фазы намного короче, чем у сердечной и гладких мышц.
Ниже приводятся схематические изображения (рис 1) изменения возбудимости в разные периоды одиночного сокращения сердечной (пунктирная линия) и скелетной (сплошная линия) мышц
Рис.1. 1-латентный период, 2-период сокращения, 3-период расслабления
а) абсолютная рефрактерность
б) относительная рефрактерность
в) фаза супернормальности (экзальтации)
а также сопоставление (рис 2) фаз рефрактерности с фазами потенциала действия скелетной (А) и сердечной (Б) мышц.
А Б
Рис. 2. 1 - латентный период, 2 - фаза деполяризации, 3 - фаза реполяризации, 3а - плато (медленная деполяризация или начальная реполяризация); а) - абсолютная рефрактерность, б) относительная рефрактерность, в) фаза супернормальности (или фаза экзальтации
Во время фазы абсолютной рефрактерности ткань не возбудима, во время относительной рефрактерности возбудимость снижена, и она не восстановилась еще до нормы. Наличие продолжительной абсолютной рефрактерности у сердечной мышцы является причиной, предохраняющей сердце от повторного возбуждения (а стало быть, сокращения) в период систолы. Сердце приобретает способность к повторному сокращению на приходящий импульс во время диастолы, т.е. в фазу относительной рефрактерности, в этот период возникает так называемая экстрасистола (дополнительная систола). После экстрасистолы следует компенсаторная пауза за счет выпадения одного естественного сокращения, так как очередной импульс попадает на абсолютную рефрактерность экстрасистолы. Это явление чаще наблюдается при желудочковой экстрасистолии и тахикардии. Экстрасистолы по происхождению могут быть наджелудочковыми (из синусного узла, предсердий или атриовентрикулярного узла) и желудочковыми. Экстрасистолия, как правило, сопровождается аритмией, которая при некоторых заболеваниях сердца (инфаркт миокарда, гипокалиемия, растяжение желудочков и т.д.) может переходить в фибрилляцию (трепетание и мерцание предсердий или желудочков). Наибольшая опасность возникновения этих явлений наблюдается тогда, когда экстрасистола попадает в так называемый «уязвимый период». Таким уязвимым местом или периодом считается фаза реполяризации желудочков и соответствует восходящей части зубца Т на ЭКГ. При наличии эктопических зон вероятность возникновения фибрилляции желудочков многократно возрастает.
Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий, а вставочные диски между кардиомиоцитами не препятствуют проведению возбуждения, и происходит одновременное возбуждение всех клеток. Поэтому следующей особенностью возбудимости сердечной мышцы является то, что сердце работает по закону «все или ничего», тогда как скелетная мышца и нервы не подчиняются этому закону (лишь отдельные волокна скелетных мышц и нервов функционируют по закону « все или ничего»).
Автоматизм. Ритмические сокращения сердца обусловлены импульсами, генерируемыми в самом сердце. Сердце лягушки, помещенное в рингеровский (физиологический) раствор может сокращаться в прежнем ритме длительное время. Изолированное сердце теплокровных животных также может сокращаться длительно, но требуется соблюдение ряда условий: пропускать (перфузировать) Рингер-Локковский раствор под давлением через сосуды сердца (канюля в аорте), tº раствора = 36-37º, через раствор пропускать кислород или просто воздух (аэрация), в растворе должна содержаться глюкоза. В норме ритмические импульсы образуются только специализированными клетками водителя ритма сердца (пейсмекера), которым является сино-атриальный узел (СА узел). Однако в условиях патологии остальные участки проводящей системы сердца способны самостоятельно генерировать импульсы. Явления автоматизма целиком и полностью зависят от проводящей системы сердца, т.е. она выполняет также функцию проведения, обеспечивает, таким образом, свойство проводимости. Как распространяется возбуждение по проводящей системе сердца к рабочему миокарду? От пейсмекера – синоатриального узла, который расположен в стенке правого предсердия у места впадения в него верхней полой вены, возбуждение вначале распространяется по рабочему миокарду обоих предсердий. Единственным путем дальнейшего распространения возбуждения является атриовентрикулярный узел. Здесь происходит небольшая задержка – 0,04-0,06 сек (атриовентрикулярная задержка) проведения возбуждения. Эта задержка имеет принципиально большое значение для последовательного (не одновременного) сокращения предсердий и желудочков. Благодаря этому кровь из предсердий может поступить в желудочки. Если бы не было этой задержки, то происходило бы одновременное сокращение предсердий и желудочков, а так как последние развивают значительное полостное давление, то кровь не смогла бы поступить из предсердий в желудочки. Пучок Гиса, его левая и правая ножки и волокна Пуркинье проводят импульсы со скоростью примерно 2 м/с, и различные участки желудочков возбуждаются синхронно. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с. Средний ритм сердца в норме, а стало быть, количество импульсов в синоатриальном узле составляет 60-80 в 1 мин. При блокаде передачи импульсов от СА узла пейсмекерную функцию берет на себя АВ-узел с ритмом около 40-50 в 1 мин. Если будет выключен и этот узел, то пейсмекером становится пучок Гиса, при этом частота сердечных сокращений будет 30-40 в минуту. Но даже волокна Пуркинье могут спонтанно возбуждаться (20 в 1 мин.) при выпадении функции пучков Гиса.
СА-узел называют номотопным (нормально расположенным) центром автоматии, а очаги возбуждения в остальных отделах проводящей системы сердца – гетеротопными (ненормально расположенными) центрами. Эти ритмы возникают не за счет основного водителя (СА-узла) и они носят название «заместительных ритмов». Кроме перечисленных гетеротопных центров в патологии (инфаркт миокарда, гипокалиемия, растяжение) могут появляться эктопические водители ритма сердца. Они локлизуются за пределами проводящей системы сердца. При полном исчезновении автоматизма сердца применяются искусственные водители ритма сердца, т.е. искусственное электрическое раздражение желудочков либо путем подачи тока через интактную грудную клетку, либо через имплантированные электроды. Такое искусственное раздражение сердца иногда применяется годами (миниатюрные водители ритма сердца, расположенные под кожей и работающие от батареек). Способность сердца возбуждаться за счет автоматизма имело большое значение для разработки стратегии и тактики хирургической пересадки сердца. Первоначально эти исследования были проведены Кулябко, Неговским и Синицыным.
СОКРАТИМОСТЬ. Сердце сокращается по типу одиночного сокращения, т.е. одно сокращение на одно раздражение. Скелетная мышца сокращается тетанически. Такая особенность сердечной мышцы обусловлена продолжительной абсолютной рефрактерностью, которая занимает всю систолу. Сокращение предсердий и желудочков имеет последовательный характер. Сокращение предсердий начинается в области устьев полых вен, и кровь движется только в одном направлении, а именно в желудочки через предсердно-желудочковые отверстия. В это время устья полых вен сжимаются, и кровь поступает в желудочки. В момент диастолы желудочков атриовентрикулярные клапаны открываются. При сокращении желудочков кровь устремляется в сторону предсердий и захлопывает створки этих клапанов. Клапаны не могут открыться в сторону предсердий, т.к. этому препятствуют сухожильные нити, которые прикрепляются к сосочковым мышцам. Повышение давления в желудочках при их сокращении приводит к изгнанию крови из правого желудочка в легочную артерию, а из левого желудочка – в аорту. В устьях этих сосудов имеются полулунные клапаны. Эти клапаны расправляются в момент диастолы желудочков за счет обратного тока крови в сторону желудочков. Эти клапаны выдерживают большое давление (особенно аортальный) и не пропускают кровь из аорты и легочной артерии в желудочки. Во время диастолы предсердий и желудочков давление в камерах сердца падает и кровь из вен поступает в предсердия, а затем в желудочки.
Дата: 2018-12-21, просмотров: 252.