Аденозинтрифосфорная кислота (АТФ) — универсальный переносчик и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ колеблется и в среднем составляет 0,04% (на сырую массу клетки). Наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.
АТФ представляет собой нуклеотид, образованный остатками азотистого основания (аденина), сахара (рибозы) и фосфорной кислоты (рис. 278). В отличие от других нуклеотидов, АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам — веществам, содержащим в своих связях большое количество энергии.
|
АТФ — нестабильная молекула: при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту). Распаду может подвергаться и АДФ с образованием АМФ (аденозинмонофосфорная кислота). Так как гидролитическое отщепление концевых остатков требует затрат энергии, выход свободной энергии при отщеплении каждого концевого остатка составляет около 30,5 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Таким образом, АТФ имеет две макроэргические связи.
Вместе с тем, при наличии в клетке свободной энергии осуществляется ресинтез АТФ. Синтез АТФ происходит в основном в митохондриях. Для образования каждой макроэргической связи требуется 40 кДж.
Глава 36. Строение клетки
Клетка — элементарная живая система, единица строения, жизнедеятельности, размножения и развития живых организмов. Это самая простая (элементарная) живая система, способная к самообновлению, саморегуляции и самовоспроизведению. В зависимости от количества клеток, образующих организм, различают:
© одноклеточные организмы;
© многоклеточные организмы.
Клетки живых организмов очень разнообразны: они отличаются друг от друга формой, размерами, особенностями организации и функциями. По форме различают шаровидные, цилиндрические, призматические, кубические, удлиненные, дисковидные, звездчатые и другие клетки. Наиболее часто встречаются клетки шаровидной или овальной формы.
|
|
Разнообразны и размеры клеток. Большинство клеток имеют размеры от 10 до 100 мкм, реже — 1-10 мм (клетки мякоти арбуза) и очень редко от 5 до 10 см (яйца птиц — гусей, пингвинов, страусов).
В зависимости от наличия в клетке оформленного ядра различают два уровня клеточной организации:
© эукариотический, если клетки имеют структурно оформленное ядро;
© прокариотический, если клетки не имеют структурно оформленного ядра.
В этой главе будут рассмотрены особенности организации только эукариотической клетки. Как правило, эукариотическая клетка состоит из трех неразрывно связанных жизненно важных частей (рис. 279):
© клеточной оболочки, состоящей из мембраны и наружного слоя;
© цитоплазмы;
© ядра.
Клеточные мембраны
В основе структурной организации клетки лежит мембранный принцип строения, то есть клетка в основном построена из мембран. Все биологические мембраны имеют общие структурные особенности и свойства.
В настоящее время общепринята жидкостно-мозаичная модель строения мембраны.
Химический состав
И строение мембраны
Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Липиды составляют в среднем ≈40% химического состава мембраны. В бислое хвосты молекул в мембране обращены друг к другу, а полярные головки — наружу, поэтому поверхность мембраны гидрофильна. Липиды определяют основные свойства мембран.
Помимо липидов в состав мембраны входят белки (в среднем ≈60%). Они определяют большинство специфических функций мембраны. Молекулы белков не образуют сплошного слоя (рис. 280). В зависимости от локализации в мембране различают:
© периферические белки — белки, располагающиеся на наружной или внутренней поверхности липидного бислоя;
© полуинтегральные белки — белки, погруженные в липидный бислой на различную глубину;
© интегральные, или трансмембранные белки — белки, пронизывающие мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки.
Мембранные белки могут выполнять различные функции:
© транспорт определенных молекул;
© катализ реакций, происходящих на мембранах;
© поддержание структуры мембран;
© получение и преобразование сигналов из окружающей среды.
|
В состав мембраны может входить от 2 до 10% углеводов. Углеводный компонент мембран обычно представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Функции углеводов клеточной мембраны до конца не выяснены, однако можно сказать, что они обеспечивают рецепторные функции мембраны.
В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину в несколько десятков нанометров. В нем происходит внеклеточное пищеварение, располагаются многие рецепторы клетки, с его помощью, по-видимому, происходит адгезия клеток.
Молекулы белков и липидов подвижны, способны перемещаться, главным образом, в плоскости мембраны. Мембраны асимметричны, то есть липидный и белковый состав наружной и внутренней поверхности мембраны различен.
Толщина плазматической мембраны в среднем 7,5 нм.
Функции мембран |
Клеточные мембраны играют важную роль по ряду причин:
© они отделяют клеточное содержимое от внешней среды;
© регулируют обмен между клеткой и средой;
© делят клетки на отсеки, или компартменты, предназначенные для тех или иных специализированных метаболических путей;
© некоторые химические реакции протекают на самих мембранах (световые реакции фотосинтеза в хлоропластах, окислительное фосфорилирование при дыхании в митохондриях);
© обеспечивают связь между клетками в тканях многоклеточных организмов;
© на мембранах располагаются рецепторные участки для распознавания внешних стимулов.
Дата: 2018-11-18, просмотров: 310. |