Расчет тестомесильной машины И8-ХТА-12/1
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Расчет тестомесильной машины И8-ХТА-12/1

 

Выполнил:

Проверил:

 

 

Тула 2009.



Содержание

Введение

1. Классификация тестомесильных машин

2. Функциональные схемы тестомесильных машин периодического действия

2.1 Тестомесильные машины с подкатными дежами

2.2 Тестомесильные машины периодического действия со стационарными дежами

3. Функциональные схемы тестомесильных машин непрерывного действия

4. Тестомесильная машина И8-ХТА-12/1

5. Расчет тестомесильной машины

5.1 Расход энергии на замес теста

5.2 Производительность тестомесильной машины

5.3 Величину удельной работы

5.4 Выбор моторредуктора

5.5 Кинематический расчет привода

5.6 Расчет зубчатой цилиндрической передачи

5.7 Проектирование приводного вала

5.8 Расчетная схема приводного вала

5.9 Проверка приводного вала на усталостную прочность

5.10 Расчет подшипников на срок службы по динамической грузоподъемности

5.11 Подбор шпонок для приводного вала

5.12 Подбор и проверка муфт

Заключение

Список литературы

 



Введение

В хлебопекарной, макаронной и кондитерской промышленности на различных этапах технологического процесса широко применяются смесительные машины. Процесс перемешивания может осуществляться с различной интенсивностью, частотой воздействия рабочего органа и длительностью в зависимости от конструкции смесителя и свойств обрабатываемых компонентов. Интенсификация рабочих процессов в смесительных камерах способствует значительному сокращению процесса брожения и повышению качества готовых изделий.

Замес хлебопекарного теста заключается в смешивании сырья (муки, воды, дрожжей, соли, сахара и других компонентов) в однородную массу, придании этой массе необходимых структурно-механических свойств, насыщении ее воздухом и создания благоприятных условий для последующих технологических операций.

Тестомесильные машины в зависимости от рецептурного состава и особенностей ассортимента должны оказывать различное воздействие на тесто и последующее его созревание. От работы тестомесильных машин зависит в итоге качество готовой продукции. Конструкция тестомесильной машины во многом определяется свойствами замешиваемого сырья, например эластично-упругое тесто требует более интенсивного проминания, чем пластичное.

Специфика процессов перемешивания рецептурных смесей и полуфабрикатов в хлебопекарном производстве обусловлена как свойствами сыпучего компонента — муки, так и жидкими компонентами, содержащими микроорганизмы (дрожжи, молочнокислые бактерии и др.) и активные ферменты. В работе представлены отечественные и зарубежные тестомесильные машины. Изложены сведения о принципах действия и конструктивных особенностях. Приведены классификационные матрицы функциональных схем тестомесильных машин.



Функциональные схемы тестомесильных машин периодического действия

Производительность тестомесильной машины

 

Производительность тестомесильной машины непрерывного действия оценивают по формуле

ПН = z × (π ×D2 / 240) ×s × ρ × n ×K2×K3, (2.1)

 

где z – число валов месильных органов, z = 2;

D – диаметр окружности, описываемой крайними точками

лопатки, D = 0,38 м;

n – частота вращения вала с лопатками, n =60 об/мин;

s – площадь лопатки, S =0,0035 м2;

ρ – плотность теста, , ρ =1100 кг/м3;

K 2 – коэффициент заполнения месильной камеры (K 2 = 0,3…0,7 )

K 3 – коэффициент подачи, K 3 = 0,3 … 0,5

Величину удельной работы

 

Величину удельной работы при непрерывном замесе определяют по формуле


А = Рдв / ( η Пн ), (3.1)

 

где А – удельная работа замеса, Дж/г; для обычного замеса ;

а = (2 … 4 )Дж/г;

Рдв – мощность двигателя тестомесильной машины , кВт;

η – кпд привода, 0,8.

Из этого выражения при известной производительности машины найдём мощность двигателя [4]

Рдв = А × Пн × η

Рдв = 4×0,8×21,6×1000/60 =3,264 кВт


Выбор моторредуктора

 

Выбираем моторредуктор большей ближайшей мощности для исключения перегрева при непрерывной работе со следующими характеристиками:

- мощность Рдв = 4.0 кВт

- частота вращения выходного вала n мр = 150 об/мин

- кратность пускового момента равна 1,4.

Выбор производится по таблице мощности с учётом режима работы

Рр = Рдв Кр,

 

где Кр – коэффициент режима работы. При спокойной нагрузке с продолжительностью работы 20ч в сутки Кр = 1

Рр = 4.0 ×1 = 4.0 кВт

 - ήр = 0,95;

- передаточное число u р = 5



Определение длины шпонки l

l= lp + b,

где l – длина шпонки, мм.

l= 38 +12 = 50 мм

Выбираем стандартную длину шпонки из ряда l = 50мм

Подбор и проверка муфт

На выходном валу моторредуктора устанавливаем муфту компенсирующую упругую втулочно–пальцевую типа МУВП.

Определяем величину расчётного момента Тр. 

Тр=kp·Твх £ [Т],

 

где Тр – величина расчётного момента передаваемого муфтой, Нм;

kp – коэффициент режима работы, учитывающий характер нагрузки и режим работы, kp =1,3 табл. 11.3 [4];

[Т] – допускаемый крутящий момент, на передачу которого рассчитана муфта, Нм. табл. 11.5. [10];

Тр=1,3·255=331 Нм.

Тр = 331 < [Т] = 500 – условие выполняется

Выбираем муфту упругую втулочно-пальцевую МУВП – 500–25–1.1–У3 ГОСТ 21424–74 табл. 11.5 [4]..

Коэффициент применяемости

K пр =[( z ст + z ун + z н )/( z ст + z ун + z н + z ор )]100%

z ст – сумма стандартных деталей; z унсумма унифицированных деталей; z н сумма нормализованных деталей.

K пр =172/201·100%=85,5 %

Коэффициент повторяемости

K п =( z ст + z ун + z н )/ P ст

Кп=172/120=1,43



Заключение

В данной работе дана классификация тестомесильных машин, используемых на современных пищевых предприятиях, обеспечивающих высокий уровень производства и увеличивающих его производительность. Приведен анализ тестомесильных машин периодического и непрерывного действия, который показывает основную зависимость типа машины от вида используемого сырья; рассмотрено устройство и конструктивные особенности, приведены технические характеристики отечественных и импортных тестомесильных машин.

Дано описание тестомесильных машин конструкции И8-ХТА-12/1; указана область её применения в поточной линии; правильность монтажа и обслуживания, рассмотрены конструкции, принцип работы и технические характеристики.

Приведены расчеты расхода энергии на замес теста, производительности, приводного вала, шестерни. Был выбран привод и рассчитаны его основные параметры, подобран моторредуктор.

В результате проведенных исследований было установлено, что тестомесильная машина, используемая в пищевых производствах, является высокоэффективным технологическим оборудованием, которое значительно повышает производительность труда.

 



Список литературы

1. Азаров Б.М. Технологическое оборудование хлебопекарных и макаронных предприятий: Учеб. пособие /Б.М. Азаров., А.Т. Лисовенко., С.А. Мачихин– М.:Агропромиздат, 1986. – 263 с.

2. Антипов С.Т. Машины и аппараты пищевых производств. В 2 кн. /С.Т.Антипов, И.Т. Кретов и др.; Под ред. акад. РАСХН В.А. Панфилова. – М.: Высш. шк., 2001. – 703 с.: ил.

3. Головань Ю.П. Технологическое оборудование хлебопекарных предприятий./Ю.П. Головань - М.: Легкая и пищевая промышленность, 1983. – 432 с.: ил.

4. Иванов М.Н. Детали машин: Учеб. пособие / М.Н.Иванов. – М.: Высш. шк., 1984

5. Лисовенко А.Т. Смесительные машины в хлебопекарной и кондитерской промышленности: Учебное пособие /А.Т. Лисовенко, И.Н. Литовченко, И.В. Зирнис и др.; Под ред. А.Т. Лисовенко. – К.: Урожай, 1990. – 192 с, ил.

6. Прейс В.В. Проектирование машин и аппаратов пищевых и перерабатывающих производств. Учебное пособие. Тула: Изд-во ТулГУ. 2005.- 156 с.

7.  Чернавский С.А. Курсовое проектирование деталей машин: Учеб. пособие / С.А.Чернавский, К.Н Боков, И.М. Чернин и др. – 2-е изд., перераб. и доп. – М.: Машиностроение, 1988. – 416 с.: ил.

 

Расчет тестомесильной машины И8-ХТА-12/1

 

Выполнил:

Проверил:

 

 

Тула 2009.



Содержание

Введение

1. Классификация тестомесильных машин

2. Функциональные схемы тестомесильных машин периодического действия

2.1 Тестомесильные машины с подкатными дежами

2.2 Тестомесильные машины периодического действия со стационарными дежами

3. Функциональные схемы тестомесильных машин непрерывного действия

4. Тестомесильная машина И8-ХТА-12/1

5. Расчет тестомесильной машины

5.1 Расход энергии на замес теста

5.2 Производительность тестомесильной машины

5.3 Величину удельной работы

5.4 Выбор моторредуктора

5.5 Кинематический расчет привода

5.6 Расчет зубчатой цилиндрической передачи

5.7 Проектирование приводного вала

5.8 Расчетная схема приводного вала

5.9 Проверка приводного вала на усталостную прочность

5.10 Расчет подшипников на срок службы по динамической грузоподъемности

5.11 Подбор шпонок для приводного вала

5.12 Подбор и проверка муфт

Заключение

Список литературы

 



Введение

В хлебопекарной, макаронной и кондитерской промышленности на различных этапах технологического процесса широко применяются смесительные машины. Процесс перемешивания может осуществляться с различной интенсивностью, частотой воздействия рабочего органа и длительностью в зависимости от конструкции смесителя и свойств обрабатываемых компонентов. Интенсификация рабочих процессов в смесительных камерах способствует значительному сокращению процесса брожения и повышению качества готовых изделий.

Замес хлебопекарного теста заключается в смешивании сырья (муки, воды, дрожжей, соли, сахара и других компонентов) в однородную массу, придании этой массе необходимых структурно-механических свойств, насыщении ее воздухом и создания благоприятных условий для последующих технологических операций.

Тестомесильные машины в зависимости от рецептурного состава и особенностей ассортимента должны оказывать различное воздействие на тесто и последующее его созревание. От работы тестомесильных машин зависит в итоге качество готовой продукции. Конструкция тестомесильной машины во многом определяется свойствами замешиваемого сырья, например эластично-упругое тесто требует более интенсивного проминания, чем пластичное.

Специфика процессов перемешивания рецептурных смесей и полуфабрикатов в хлебопекарном производстве обусловлена как свойствами сыпучего компонента — муки, так и жидкими компонентами, содержащими микроорганизмы (дрожжи, молочнокислые бактерии и др.) и активные ферменты. В работе представлены отечественные и зарубежные тестомесильные машины. Изложены сведения о принципах действия и конструктивных особенностях. Приведены классификационные матрицы функциональных схем тестомесильных машин.



Дата: 2019-12-10, просмотров: 305.