Технико-экономический расчет по выбору мощности силовых трансформаторов проектируемой подстанции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Реферат

 

Целью дипломного проекта является разработка наиболее оптимального варианта понизительной подстанции для электроснабжения промышленных и гражданских потребителей городского района.

Проект состоит из расчетно-пояснительной записки на 106 страницах машинописного текста, включая 10 иллюстраций и 30 таблиц, а также графической части на 8 листах формата А1. Библиография – 18 наименований.

ЭЛЕКТРОСНАБЖЕНИЕ, ПОТРЕБИТЕЛИ, РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО, ПОДСТАНЦИЯ, РЕЛЕЙНАЯ ЗАЩИТА, ТРАНСФОРМАТОР, ВЫСОКОВОЛЬТНОЕ ОБОРУДОВАНИЕ, ОСВЕЩЕНИЕ.

Объектом проектирования является понизительная подстанция для электроснабжения потребителей Кировского района города Саратова.

Целью проектирования является выбор силовых трансформаторов, высоковольтных аппаратов, токоведущих частей и другого оборудования подстанции; расчет освещения, заземления и молниезащиты подстанции; разработка организационно-экономических вопросов.

В результате проведенных расчетов принята типовая комплектная трансформаторная подстанция из блоков заводского изготовления типа КТПБ 110/10 – 5 – М – 2 х- 10000 – 59 У1

Выводы, сделанные при разработке темы для углубленной разработки (спецвопрос), могут быть использованы в проектной и эксплутационной практике.



Содержание

 

Введение

1.Краткая характеристика объекта проектирования

2. Обработка графиков нагрузок подстанции

3. Выбор числа и мощности силовых трансформаторов

Технико-экономический расчет по выбору мощности силовых трансформаторов проектируемой подстанции

4. Выбор главной схемы электрических соединений

5. Расчет токов короткого замыкания

6. Выбор основного оборудования и токоведущих частей

6.1 Выбор высоковольтных выключателей

6.2 Выбор разъединителей, отделителей и короткозамыкателей

6.3 Выбор ограничителей перенапряжения

6.4 Выбор предохранителей

6.5 Выбор заземлителей нейтралей

6.6 Выбор токоведущих частей

6.7 Выбор изоляторов

6.8 Выбор измерительных трансформаторв тока и напряжения

7.Выбор релейной защиты и автоматики

8. Измерение и учет электроэнергии

9. Выбор оперативного тока и источников питания

10. Собственные нужды подстанции

11. Регулирование напряжения на проектируемой подстанции

12.Выбор конструкции распредустройств, компоновка сооружений на площадке подстанции

13. Меры по предотвращению поломок опорно-стержневых изоляторов 35-220 кВ

14. Освещение подстанции

15. Молниезащита подстанции

16. Заземление подстанции

17. Безопасность проектируемой подстанции 110/10 кВ

18. Заключение

19.Список использованных источников

Приложение



Введение

Рост объема промышленного, сельскохозяйственного производства, а также бытовых потребителей приводит к увеличению электрической нагрузки в распределительных и питающих сетях объединенной энергосистемы по сравнению с предыдущими годами. Это требует значительного обновления энергетических сетей, так как оборудование, находящееся в эксплуатации, в большинстве своем выработало свой ресурс, многое оборудование морально и физически устарело на фоне появления более современных электрических трансформаторных подстанций.

Дипломный проект выполнен в соответствии с требованиями Правил устройства электроустановок, Правил технической эксплуатации электроустановок потребителей и Правил техники безопасности при эксплуатации электроустановок потребителей, Инструкции по проектированию городских электрических сетей и других документов. В дипломном проекте использованы типовые решения по главным схемам электрических соединений, схемам релейных защит и устройств автоматикиаппаратов и технологий производства и передачи электроэнергии.

 



Выбор основного оборудования и токоведущих частей

Выбор предохранителей

 

Для защиты трансформаторов напряжения, установленных на сборных шинах 10 кВ, от токов внутренних КЗ используются плавкие предохранители ПКН001 – 10У3.

Для защиты всех трансформаторов напряжения от токов КЗ в цепи измерительных приборов используются плавкие предохранители ПН2.

Все предохранители поставляются в комплекте с трансформаторами напряжения.

 

Выбор токоведущих частей

 

На проектируемой подстанции принимаем в открытой части жесткую ошиновку алюминиевыми шинами из сплава АД31. Соединение трансформаторов с жесткими шинами ОРУ, а также с КРУН выполняется сталеалюминевыми проводами марки АС. В КРУН применяется жесткая ошиновка.

Выбор жестких шин.

Выбор всех жестких шин, кроме сборных шин, осуществляется по экономической плотности тока.

Экономически целесообразное сечение шин:

 

(37)

 

Где рабочий ток, А;

экономическая плотность тока, А/мм2 (  А/мм2 по таблице 1.3.36 [2]).

 

(38)

 

Произведем расчет для вводных шин в РУ – 10 кВ проектируемой подстанции.

 

 кА;

 мм2.


По сортаменту плоских шин (таблица 7.3 [4]) выбираем плоские однополосные шины (с установкой "плашмя") сечением мм2 (640 мм2).

Проверка на максимальный длительный ток нагрузки:

 

(39)

 

Где допустимый ток нагрузки, А (для шин выбранного сечения  А по таблице 7.3 [4]).

Для вводных шин  А (по таблице 6), поэтому это условие выполняется, так как 809 А < 1214 А.

Проверка на термическую стойкость к токам КЗ:

 

(40)

 

Где минимально допустимое по нагреву токами КЗ сечение шины, мм2.

 

(41)

 

Где температурный коэффициент, Ас1/2/мм2 (для алюминиевых шин  Ас1/2/мм2 по таблице 1.15 [4]).

Для вводных шин  кА2с (по таблице 6), тогда

 

 мм2.


Это условие выполняется, так как 103,5 мм2 < 640 мм2.

Проверка на электродинамическую стойкость к токам КЗ:

 

(42)

 

Где допустимое механическое напряжение в шинах, МПа (для алюминиевых шин, выполненных из сплава АД31  МПа по таблице 4.2 [1]);

расчетное механическое напряжение в шинах, МПа.

 

(43)

 

Где изгибающий момент, Н×м;

момент сопротивления, м3.

 

(44)

 

Где изгибающая сила, прикладываемая к единице длины, Н/м;

расстояние между изоляторами, м (для КРУН м [1]).

 

(45)

 

Где расстояние между осями фаз, м (для КРУН  м [1]);

коэффициент формы ( , так как расстояние между фазами меньше периметра сечения шины [1]).

 


Для плоских шин

 

(46)

 

Где размеры шины, м.

Для трубчатых шин

 

(47)

 

Где внешний и внутренний диаметры трубчатой шины, м.

С учетом формул (45) – (48) формула (49) принимает следующий вид.

Для плоских шин:

 

(48)

 

Для трубчатых шин:

 

(49)

 МПа.

 

Это условие выполняется, так как 4,76 МПа < 75 МПа.

Все условия проверки выполняются, таким образом, выбранные шины могут быть установлены в РУ – 10 кВ проектируемой подстанции. Остальные шины (кроме сборных шин РУ) выбираются и проверяются аналогично. Результаты выбора и проверки сведены в таблицу 11.

Номинальные данные плоских шин приняты по таблице 7.3 [4], а для трубчатых шин по таблице 7.4 [4].

Выбор сборных шин осуществляется по максимальному рабочему току нагрузки по (44).

Произведем выбор и проверку для сборных шин РУ – 10 кВ.

Для них  А (таблица 6). Выбираем плоские однополосные алюминиевые шины с сечением  мм2 (640 мм2), устанавливаемые "плашмя" для которых А.

Проверка на термическую стойкость к токам КЗ по (40).

Для стороны 10 кВ  мм2 по таблице 12, поэтому это условие выполняется, так как 149,2 мм2 < 640 мм2.

Проверка на электродинамическую стойкость к токам КЗ по (42).

 

 МПа.

 

Это условие выполняется, так как 4,76 МПа < 75 МПа.

Все условия проверки выполняются, следовательно, выбранные сборные шины могут быть установлены в РУ – 10 кВ.

Номинальные данные плоских шин приняты по таблице 7.3 [4].




Выбор изоляторов

 

Выбор опорных изоляторов производится по следующим условиям.

По номинальному напряжению:

 

(51)

 

Где номинальное напряжение сети, кВ;

номинальное напряжение изоляторов, кВ.

По допустимой нагрузке:

 

(52)

 

Где сила, действующая на изолятор, Н;

допустимая нагрузка на головку изолятора, Н.

 

(53)

 

Где разрушающая нагрузка на изгиб, Н.

 


(54)

 

Где поправочный коэффициент на высоту шины(если шины расположены "плашмя", то  [1]).

С учетом (53) и (54) формула (52) примет вид

 

(55)

 

Произведем выбор для опорных изоляторов РУ – 10 кВ. Для них: кВ,

 

 Н.

 

По таблице 5.7 [4] выбираем опорные изоляторы внутренней установки И4 – 80 УХЛ3 у которых кВ, а Н.

Опорные изоляторы для РУ – 110 кВ выбираются аналогично. Результаты выбора сведены в таблицу 13.

 

Таблица 13 – Результаты выбора опорных изоляторов

Место

установки

Расчетные данные

Номинальные данные изоляторов

 кВ  Н Тип изолятора  кВ  Н
РУ – 10 кВ 10 712 И4 – 80 УХЛ3 10

 

4000

РУ – 110 кВ 110 115 ИОСПК-10-110/450-II-УХЛ1 110

 


Выбор проходных изоляторов.

Выберем для ввода в КРУН проходные изоляторы. Выбор осуществляется по условиям (54) и (55). Кроме того, вводится еще одно условие выбора:

 

(56)

 

Где номинальный ток изолятора, А.

Для проходных изоляторов

 

(57)

 

С учетом (58) и (62) формула (57) примет вид:

 

(58)

 

Для вводов КРУН А (таблица 6).

 

кВ,

А,

 Н.

 

По таблице 5.8 [4] выбираем проходные изоляторы наружно-внутренней установки ИП – 10/1000 – 1250 УХЛ1 для которых кВ, А,  Н.



Защита трансформаторов

Согласно ПУЭ [2] для силовых трансформаторов должны быть предусмотрены устройства релейной защиты от следующих видов повреждений и ненормальных режимов работы:

- многофазных замыканий в обмотках и на выводах;

- витковых замыканий в обмотках;

- токов в обмотках, обусловленных внешними КЗ;

- токов в обмотках, обусловленных перегрузкой;

- понижения уровня масла;

Для защиты от повреждений внутри кожуха, сопровождающихся выделением газа, и от понижения уровня масла предусматривается газовая защита.

Газовая защита должна действовать на сигнал при слабом газообразовании и понижении уровня масла и на отключение при интенсивном газообразовании и дальнейшем понижении уровня масла.

Для защиты от повреждений на выводах, а также от внутренних повреждений предусматривается продольная дифференциальная токовая защита без выдержки времени. Она должна действовать на отключение трансформатора со всех сторон.

Так как на проектируемой подстанции трансформаторы присоединяются к питающим линиям без выключателей, то для отключения повреждений в трансформаторе предусматривается установка короткозамыкателей для искусственного замыкания на землю одной фазы, и отделителей, автоматически отключающихся в бестоковую паузу АПВ питающей линии.

Повреждения на выводах 110 кВ трансформаторов допускается ликвидировать защитой питающих линий.

Для защиты от токов в обмотках, обусловленных внешними многофазными КЗ, предусматривается максимальная токовая защита с комбинированным пуском напряжения.

Для защиты от токов в обмотках, обусловленных перегрузкой, предусматривается токовая защита от перегрузки.

Схема релейной защиты одного трансформатора представлена на листе КФБН 1004.05.366 ЭО графической части дипломного проекта.

Газовая защита

Газовая защита основана на использовании явлении газообразования в баке поврежденного трансформатора. Интенсивность газообразования зависит от характера и размеров повреждения. Это дает возможность выполнить газовую защиту, способную различать степень повреждения и в зависимости от этого действовать на сигнал или отключение.

Основным элементом газовой защиты является газовое реле, устанавливаемое в маслопроводе между баком и расширителем. На трансформаторах типа ТДН–10000/110, устанавливаемых на проектируемой подстанции используется газовое реле типа BF–80/Q с двумя пластмассовыми шарообразными поплавками.

Достоинства газовой защиты: высокая чувствительность и реагирование практически на все виды повреждений внутри бака; сравнительно небольшое время срабатывания (0,05 – 0,5 с); простота выполнения, а так же способность защищать трансформатор при недопустимом уровне масла по любым причинам. Наряду с этим защита имеет ряд существенных недостатков, основной из которых – не реагирование ее на повреждения, расположенные вне бака, в зоне между трансформатором и выключателями.

Автоматика подстанции

На линейных выключателях отходящих линий проектируемой подстанции предусматриваются устройства автоматического повторного включения (АПВ). Их назначение – автоматическое повторное включение линий под напряжение после отключения их релейной защитой при КЗ. Если КЗ было неустойчивым, то линия остается в работе, иначе отключается снова релейной защитой. Поэтому устройства АПВ должны быть однократного действия, чтобы избежать повторного включения на устойчивое КЗ.

Принципиальная схема АПВ для линии на выпрямленном оперативном токе представлена на рисунке 7. В комплектное устройство РПВ-58 входят: реле времени КТ типа ЭВ-133 с добавочным резистором R 1; промежуточное реле KL 1 с двумя обмотками; конденсатор C (20 мкФ); зарядный резистор R 2 и разрядный резистор R 3.

Пуск схемы АПВ происходит при отключении выключателя релейной защитой. Несоответствие положений ключа и выключателя характеризуется тем, что через контакты ключа 1-3 на схему АПВ по-прежнему подается плюс оперативного тока, а ранее разомкнутый вспомогательный контакт выключателя SQ .1 переключился и замкнул цепь обмотки реле KQT , которое, сработав, подало контактом KQT .1 минус обмотку реле времени KT .

При срабатывании реле времени размыкается его мгновенный размыкающий контакт KT .1 и вводится в цепь обмотки реле дополнительное сопротивление.

ПО истечении установленной выдержки времени реле KT подключает замыкающим контактом KT .2 параллельную обмотку реле KL 1 к конденсатору C. Реле KL 1 при этом срабатывает от тока разряда конденсатора и подает команду на включения выключателя. Выключатель включается, размыкается его вспомогательный контакт SQ .1 и возвращаются в исходное положение реле KQT, KL .1 и KT.

Если повреждение на линии было неустойчивым, она останется в работе. После размыкания контакта реле времени KT .2 конденсатор C начнет заряжаться через зарядный резистор R 2, сопротивление которого выбирается таким, чтобы время заряда конденсатора составляло 20-25 с. Таким образом, спустя указанное время схема АПВ будет подготовлена к новому действию.

Если повреждение было устойчивым, то включившийся под действием схемы АПВ выключатель вновь отключится релейной защитой и вновь срабатывают реле KQT и KT. Реле KL .1 второй раз не срабатывает, так как конденсатор C разряжен. Таким образом, рассмотренная схема обеспечивает однократное действие при КЗ на линии.

В случае отключения линии защитой РЗ, когда действие АПВ не требуется, через резистор R 3 производится разряд конденсатора.

Для предотвращения многократного включения выключателя на устойчивое КЗ, в случае застревания контактов реле KL 1 в заькнутом состоянии, в схеме управления устанавливается специальное промежуточное реле KBS типа РП-232. Это реле срабатывает при прохождении тока по катушке отключения выключателя и удерживается в сработавшем положении до снятия команды на выключение. Цепь обмотки KM при этом размыкается контактом KBS .1, благодаря чему предотвращается включение выключателя.

 

Рисунок 7-Схема устройства АПВ однократного действия для линии на выпрямленном оперативном токе

 

На секционных выключателях сборных шин проектируемой подстанции, а также на выключателе, установленном в мостике на стороне 110 кВ, имеются устройства автоматического включения резерва (АВР). Их назначение – автоматическое включение этих выключателей при аварийной потере напряжения на одной из секций шин (для секционных выключателей), чтобы обеспечить питание потребителей этой секции от второй секции сборных шин; автоматическое подключение двух трансформаторов к одной питающей линии (для выключателя в мостике) при аварии на второй, или двух линий к одному трансформатору при аварийном отключении второго трансформатора.

На рисунке 8 приведена схема АВР на выпрямленном оперативном токе для секционного выключателя. Секционный выключатель Q 3 нормально отключен. Оперативный ток для схемы автоматики подается от трансформаторов собственных нужд T 3 и T 4. Особенностью схемы является то, что при исчезновении напряжения на одной линии (W 1 или W 2) устройство АВР включает секционный выключатель Q 3, а при восстановлении напряжения на линии автоматически восстанавливает нормальную схему подстанции.

Пусковым органом схемы автоматики являются реле времени KT 1 и KT 2 типа ЭВ-235, контакты которых KT 1.2 и KT 2.2 включены последовательно в цепи YAT 1. Последовательно с контактами этих реле включен мгновенный контакт реле времени KT 3.1 трансформатора T2, которое контролирует напряжение на этом трансформаторе. Обмотки реле KT 1 и KT 2 включены на разные трансформаторы (T 3 и TV 1), что исключает возможность ложного действия пускового органа. Реле KT 1, подключенному к трансформатору собственных нужд T 3, установленному до выключателя трансформатора T 1, используется также для контроля за появлением напряжения на T 1 при включении линии W 1.

При исчезновении напряжения в результате отключения линии W 1 запустятся реле времени KT 1 и KT 2 и разомкнут свои мгновенные контакты KT 1.1 и KT 2.1, снимая напряжение с обмотки реле времени KT 3 типа ЭВ-248.

Если действием схемы АПВ линии напряжение на подстанции восстановлено не будет, то с установленной выдержкой времени замкнутся контакты реле времени KT 1.2 и KT 2.2 и создадут цепь на катушку отключения YAT 1 выключателя Q 1 трансформатора T 1. При отключении выключателя Q 1 замкнется его вспомогательный контакт SQ 1.1 (рисунок 8, в) в цепи катушки включения YAC 3 секционного выключателя Q 3 через еще замкнутый контакт KQC 1.1 реле однократного включения. Секционный выключатель включится и подаст напряжение на 1-ю секцию подстанции, при этом подтянется реле времени KT 2, замкнет контакт KT 2.2 и разомкнет KT 2.2. Реле KT 1 останется без напряжения, поэтому его контакт KT 1.1 останется разомкнутым, а реле времени KT 3 будет по-прежнему находится в исходном положении, держа разомкнутым все свои контакты.

При восстановлении напряжения на линии W 1 напряжение появится и на трансформаторе T 1, поскольку его отделитель оставался включенным. Получив напряжение, реле KT 1 подтянется, замкнет контакт KT 1.1 и разомкнет контакт KT 1.2. При замыкании контакта KT 1.1 начнет работать реле времени KT 3, которое своим проскальзывающим контактом KT 3.2 создаст цепь на включение выключателя Q 1, а конечным контактом KT 3.3-цепь на отключения секционного выключателя Q 3, при этом автоматически будет восстановлена исходная схема подстанции.

 

Рисунок 8-Схема АВР секционного выключателя на выпрямленном оперативном токе для двухтрансформаторной подстанции: ( а— схема подстанции; б— цепи управления и АВР выключателя Q 1; в— цепи управления и АВР выключателя Q 3).



Таблица 29 -Основные технические характеристики прибора ПКСН-1

Наименование параметра Размерность Значение
1.Диапазон контролируемых усилий нажатия кГс 0 – 100
2.Основная относительная погрешность % 1,5
3.Дискретность контроля усилий нажатия кГс 0,1
4.Вид предоставляемой информации о контролируемом усилии - цифровой
5.Напрярежение питания: от встроенного источника от сети переменного тока В  12,6 220
6.Время непрерывной работы от аккумулятора ч 16
7.Рабочий диапазон температур оС 0 - 40
8.Относительная влажность воздуха % До 98

Комплект сменных частей и диапазон регулировок позволяет производить контроль нормального нажатия контактов большинства находящихся в эксплуатации типов разъединителей наружной и внутренней установки серий РГ, РД(3), РНД(З), ЗРО, РВ(3) и др.

Для удобства пользования прибором ПКСН-1 в руководстве по его эксплуатации приведены нормативные значения нормальных контактных нажатий ламельных контактов наиболее распространенных типов разъединителей и ячеек КРУ.

Анализ повреждений электрооборудования представлен но листе КФБН 1004.06.366.07 Э2 графической части дипломного проекта.




Освещение подстанции

 

Наружное освещение подстанции осуществляется прожекторами ПЗС - 45 с лампами мощностью 1000 Вт напряжением 220 В, питаемых от трансформаторов собственных нужд.

Прожектора устанавливаются на прожекторных мачтах по углам подстанции. Расположение прожекторных мачт показано на листе графической части проекта. Угол наклона прожекторов к плоскости подстанции . Высота установки прожекторов h=22 м (исходя из высоты типовых мачт 21 м [12]).

Расчет освещения подстанции производим методом изолюкс. Построим изолюксу одного прожектора.

Освещенность точки площадки подстанции:

 

(93)

 

Где е – норма освещенности поверхности, равная 1 лк [12];

вспомогательная величина (определяется по таблице 61 [12]). Для расстояния Х=22 м от прожектора лк.

По изолюксам на условной плоскости (рисунок 44 [12]) определяем координату =0,5 на условной плоскости с освещенностью Е=968 лк.

Координата y на площадке подстанции:

(94) м. Дальнейший расчет координат для построения изолюксы освещенности производится аналогично. Результаты расчета сведены в таблицу 30.

 


Таблица 30 – Построение изолюксы освещенности прожектора

Х, м 22 33 44 55 66 77 88
Y, м 13,86 11,22 12,58 14,26 16,54 16,63 15,79

 

Изолюкса прожектора представлена на рисунке 10. Изолюкса изображена для одного квадранта, так как она симметрична относительно оси y.После рассмотрения различных вариантов расположения прожекторов на прожекторных мачтах и рассмотрения полученных зон освещенности принимаем к установке на проектируемой подстанции 5 прожекторов. На мачтах №2, №3 и №4 - по одному прожектору. На мачте №1 - два прожектора.

 

Рисунок 10 – Изолюкса прожектора.

 

При таком расположении прожекторов территория подстанции полностью освещается.




Молниезащита подстанции

 

Опасные грозовые перенапряжения в распредустройствах подстанции возникают как при непосредственном поражении их молнией, так и при набегании на подстанцию грозовых волн с ВЛ в результате поражения проводов ВЛ молнией или удара молнии в вершину опоры или трос.

Защита от набегающих волн осуществляется с помощью ограничителей перенапряжения (таблица 10).

Защита от прямых ударов молнии осуществляется отдельно стоящими молниеотводами имеющими обособленные заземлители.

На проектируемой подстанции предусматриваем 4 молниеотвода, устанавливаемых на прожекторных мачтах.

Расстояния между молниеотводами:

- между 1 и 2, 3 и 4:  м;

- между 1 и 4, 2 и 3:  м.

Наивысшая точка защищаемой подстанции  м

По [13] пространство между молниеотводами полностью перекрывается зоной защиты, если:

 

(95)

 

Где диаметр описанной окружности, проходящей через центры молниеотводов, м;

коэффициент, зависящий от высоты молниеотвода H (при);

активная высота молниеотвода – превышение его над высотой защищаемого объекта , м.

 

(96)



Заземление подстанции

 

Согласно ПУЭ [2] заземляющие устройства электроустановок 110 кВ выполняются с учетом сопротивления заземляющего устройства Ом или допустимого напряжения прикосновения.

Расчет по допустимому сопротивлению Ом приводит к неоправданному перерасходу проводникового материала и трудозатрат при сооружении заземляющего устройства для подстанции небольшой площадью, не имеющей естественных заземлителей. Опыт эксплуатации РУ – 110 кВ и выше позволяет перейти к нормированию напряжения прикосновения, а не величины .

Заземляющее устройство, выполненное по нормам напряжения прикосновения, должно обеспечивать в любое время года ограничение напряжения прикосновения  до нормированного значения в пределах всей территории подстанции, а напряжение на заземляющем устройстве  должно быть не выше 10 кВ. Заземляющее устройство для установок 110 кВ и выше выполняется из вертикальных заземлителей, соединительных полос, полос, проложенных вдоль рядов оборудования, и выравнивающих полос, проложенных в поперечном направлении и создающих заземляющую сетку с переменным шагом.

Произведем расчет заземляющего устройства по допустимому напряжению прикосновения.

Расчетная длительность воздействия напряжения прикосновения:

 

(104)

 

Где полное время отключения выключателя (для выключателя МКП – 110 это время составляет 0,08 с).


с.

 

Наибольшее допустимое напряжение прикосновения для с

 

=1,5∙83,5∙0,75+0,75∙1000=844 В

 

Коэффициент прикосновения:

 

(105)

 

где

длина вертикального заземлителя, м (принимаем м [1]);

длина горизонтального заземлителя, м (принимаем м по плану заземляющего устройства на листе графической части проекта);

расстояние между вертикальными заземлителями, м (принимаем м по плану заземляющего устройства на листе графической части проекта);

S – площадь заземляющего устройства, м2 (принимаем м2 по плану заземляющего устройства на листе графической части проекта);

М – расчетный параметр, зависящий от ;

удельное сопротивление слоев земли, Ом·м;

коэффициент, определяемый по сопротивлению тела человека  и сопротивлению растеканию тока от ступней .

 

(106)

Ом;

;

М=0,536 для  (по тексту 7.5 [1]).

 

Потенциал на заземлителе:

 

(107)

В,

 

что меньше допустимого, так как 2958,6 В < 10000 В.

Допустимое сопротивление заземляющего устройства:

 

(108)

 

где

ток, стекающий с заземлителя проектируемого заземляющего устройства при однофазном КЗ, А.

 

(109)

 

Где сопротивление нулевой последовательности трансформаторов, Ом.

 

кА.

Ом.


Действительный план заземляющего устройства преобразуем в расчетную модель со стороной м.

Число ячеек по стороне квадрата:

 

(110)

 

Принимаем m = 6.

Длина полос в расчетной модели:

 

(111)

м.

 

Длина сторон ячейки:

 

(112)

м.

 

Число вертикальных заземлителей по периметру контура:

 

(113)

 

Общая длина вертикальных заземлителей:

 

(114)

м.

 

Относительная глубина:

 

(115)

 

где

глубина заложения горизонтальных проводников, м (t = 0,7 м).

 

 

Так как , то общее сопротивление сложного заземлителя, преобразованного в расчетную модель:

 

(116)

 

где

эквивалентное удельное сопротивление земли, Ом×м ( Ом×м по таблице 7.6 [1]).

 

 

Что меньше допустимого Ом.

Напряжение прикосновения:

 


(117)

В.

 

Что меньше допустимого значения 844 В.

Наименьшее допустимое сечение проводника по условиям термической стойкости определяется по следующим формулам.

Для горизонтальных заземлителей:

 

(118)

мм2.

 

Для вертикальных заземлителей:

 

(119)

мм2.

 

По условиям механической прочности выбираем в качестве вертикальных заземляющих проводников круглые стальные прутки диаметром 10 мм2, сечение которых составляет мм2; в качестве горизонтальных заземлителей выбираем стальные полосы сечением мм2.

Молниезащита, заземление и освещение подстанции представлена на листе КФБН 1004.06.366 ЭГ графической части дипломного проекта.

 






Заключение

 

В результате работы спроектирована понизительная подстанция для электроснабжения потребителей Кировского района города Саратова.

В ходе проекта был произведён выбор силовых трансформаторов, технико-экономический расчет по выбору мощности силовых трансформаторов,высоковольтных аппаратов, токоведущих частей и другого оборудования подстанции; расчет освещения, заземления и молниезащиты подстанции.

В результате проведенных расчетов принята типовая комплектная трансформаторная подстанция из блоков заводского изготовления типа КТПБ 110/10 – 5 – М – 2 х 10000 – 59 У1.

Выводы, сделанные при разработке темы для углубленной разработки (спецвопрос), могут быть использованы в проектной и эксплутационной практике.

 



Приложение

 

Поз. обозначение

Наименование

Кол.

Примечание

 

F1,F2

Предохранитель плавкий ПКН001-10 У3

6

 

 

F3,F4

Предохранитель плавкий ПКН001-35 У1

6

 

 

FV1,FV2

Ограничитель перенапряжения ОПН-9-110/73

6

 

 

FV5..FV8

Ограничитель перенапряжения ОПН-РС-10/12,5

12

 

 

PA

Амперметр Э-335

14

 

 

PI

Счетчик активной энергии СА3 И-680

11

 

 

PK

Счетчик реактивной энергии СР4 И-673

11

 

 

PV

Вольтметр Э-335

2

 

 

PW

Ваттметр Д-335

2

 

 

Q1

Выключатель масляный баковый МКП-110Б-630-20 У1

1

 

 

Q2,Q3

Выключатель вакуумный BB/TEL-10-20/1000 У3

2

 

 

QB1

 

1

 

 

Q4..Q11

Выключатель вакуумный BB/TEL-10-20/630 У3

8

 

 

QR1,QR2

Отделитель ОДЗ-1-110/630УХЛ1

2

 

 

QS1..QS4

Разъединитель РНДЗ – 2 – 110/1000У1

4

 

 

QS5,QS6

Разъединитель РНДЗ- 1б – 110/1000У1

2

 

 

T1,T2

Силовой трансформатор ТДН– 10000/110

2

 

 

T3,T4

Трансформатор собственных нужд ТМ-40/10

2

 

 

TA1..TA3

Трансформатор тока ТФЗМ 110Б-Р/0,5-100/5 У1

6

 

 

TA33..TA41

Трансформатор тока ТЛ-10-Р/0,5-300/5 У3

24

 

 

TV1,TV2

Трансформатор напряжения ЗНОЛ 09-10У2

6

 

 

Изм.

Лист

№ докум.

Подпись

Дата

КФБН 1004 02.366.ПЭ3

 

Разраб.

Митяев А.Ю.

 

 

 

Лит.

Лист

Листов

 

Руковод.

Степанов С.Ф.

 

 

КТПБ-110/10-5-М-2х10000-59 У1

Р

Д

П

 

1

 

Н. контр.

Степанов С.Ф.

 

 

 

 

 

Реценз.

 

 

 

Перечень элементов

СГТУ ЭПП-52

 

Утвердил

Угаров Г.Г.

 

 

 

 

 
№ стр

Формат

Обозначение

Наименование

Кол.

листов

Примеч.

1

 

 

Документация текстовая

 

 

2

А4

КФБН 100400.004.ПЗ

Пояснительная записка

106

 

3

 

 

Документация графическая

 

 

4 5

А1

КФБН 1004.01.366.ГП

КТПБ-110/10-5-М-2х10000-59 У1 Ген. план района

1

 

6 7

А1

КФБН 1004.02.366.Э3

КТПБ-110/10-5-М-2х10000-59 У1 Главная схема электрических соединений

1

 

8 9

А4

КФБН 1004.02.366.ПЭ3

КТПБ-110/10-5-М-2х10000-59 У1 Перечень элементов

1

 

10 11

А1

КФБН 1004.03.366.Э2

КТПБ-110/10-5-М-2х10000-59 У1 План ПС

1

 

12 13

А1

КФБН 1004.04.366.Э2

КТПБ-110/10-5-М-2х10000-59 У1 Разрез по ячейке РУ ВН, Схема заполнения РУ НН

1

 

14 15

А1

КФБН 1004.05.366.ЭО

КТПБ-110/10-5-М-2х10000-59 У1 Шкаф защиты Т-1

1

 

16 17

А1

КФБН 1004.06.366.Э5

КТПБ-110/10-5-М-2х10000-59 У1 Молниезащита, заземление, освещение

1

 

18 19

А1

КФБН 1004.07.366.Э2

КТПБ-110/10-5-М-2х1000-59 У1 Изолятор ИОСПК-110, анализ повреждений электрооборудования

1

 

20 21

А1

КФБН 1004.08.366.Д1

КТПБ-110/10-5-М-2х10000-59 У1 Технико-экономические показатели

1

 

 

 

 

 

 

КФБН 1004.00.004.ДП

Изм.

Лист

№ докум.

Подпись

Дата

 

Разраб.

Митяев А.Ю.

 

 

 

Лит.

Лист

Листов

Руковод.

Степанов С.В.

 

 

КТПБ-110/10-5-М-2х10000-59 У1

Р

Д

П

1

1

Н.контр.

 

 

 

 

 

Реценз.

 

 

 

Ведомость дипломного проекта

СГТУ ЭПП-52

Утвердил

Угаров Г.Г.

 

 

 

 

                                             

 

Реферат

 

Целью дипломного проекта является разработка наиболее оптимального варианта понизительной подстанции для электроснабжения промышленных и гражданских потребителей городского района.

Проект состоит из расчетно-пояснительной записки на 106 страницах машинописного текста, включая 10 иллюстраций и 30 таблиц, а также графической части на 8 листах формата А1. Библиография – 18 наименований.

ЭЛЕКТРОСНАБЖЕНИЕ, ПОТРЕБИТЕЛИ, РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО, ПОДСТАНЦИЯ, РЕЛЕЙНАЯ ЗАЩИТА, ТРАНСФОРМАТОР, ВЫСОКОВОЛЬТНОЕ ОБОРУДОВАНИЕ, ОСВЕЩЕНИЕ.

Объектом проектирования является понизительная подстанция для электроснабжения потребителей Кировского района города Саратова.

Целью проектирования является выбор силовых трансформаторов, высоковольтных аппаратов, токоведущих частей и другого оборудования подстанции; расчет освещения, заземления и молниезащиты подстанции; разработка организационно-экономических вопросов.

В результате проведенных расчетов принята типовая комплектная трансформаторная подстанция из блоков заводского изготовления типа КТПБ 110/10 – 5 – М – 2 х- 10000 – 59 У1

Выводы, сделанные при разработке темы для углубленной разработки (спецвопрос), могут быть использованы в проектной и эксплутационной практике.



Содержание

 

Введение

1.Краткая характеристика объекта проектирования

2. Обработка графиков нагрузок подстанции

3. Выбор числа и мощности силовых трансформаторов

Технико-экономический расчет по выбору мощности силовых трансформаторов проектируемой подстанции

4. Выбор главной схемы электрических соединений

5. Расчет токов короткого замыкания

6. Выбор основного оборудования и токоведущих частей

6.1 Выбор высоковольтных выключателей

6.2 Выбор разъединителей, отделителей и короткозамыкателей

6.3 Выбор ограничителей перенапряжения

6.4 Выбор предохранителей

6.5 Выбор заземлителей нейтралей

6.6 Выбор токоведущих частей

6.7 Выбор изоляторов

6.8 Выбор измерительных трансформаторв тока и напряжения

7.Выбор релейной защиты и автоматики

8. Измерение и учет электроэнергии

9. Выбор оперативного тока и источников питания

10. Собственные нужды подстанции

11. Регулирование напряжения на проектируемой подстанции

12.Выбор конструкции распредустройств, компоновка сооружений на площадке подстанции

13. Меры по предотвращению поломок опорно-стержневых изоляторов 35-220 кВ

14. Освещение подстанции

15. Молниезащита подстанции

16. Заземление подстанции

17. Безопасность проектируемой подстанции 110/10 кВ

18. Заключение

19.Список использованных источников

Приложение



Введение

Рост объема промышленного, сельскохозяйственного производства, а также бытовых потребителей приводит к увеличению электрической нагрузки в распределительных и питающих сетях объединенной энергосистемы по сравнению с предыдущими годами. Это требует значительного обновления энергетических сетей, так как оборудование, находящееся в эксплуатации, в большинстве своем выработало свой ресурс, многое оборудование морально и физически устарело на фоне появления более современных электрических трансформаторных подстанций.

Дипломный проект выполнен в соответствии с требованиями Правил устройства электроустановок, Правил технической эксплуатации электроустановок потребителей и Правил техники безопасности при эксплуатации электроустановок потребителей, Инструкции по проектированию городских электрических сетей и других документов. В дипломном проекте использованы типовые решения по главным схемам электрических соединений, схемам релейных защит и устройств автоматикиаппаратов и технологий производства и передачи электроэнергии.

 



Дата: 2019-12-10, просмотров: 314.