Электрические свойства биологических тканей моделируются сочетанием элементов, обладающих омическими и емкостными свойствами. Эти свойства можно моделировать с помощью эквивалентных электрических схем. Рассмотрим три из них, рис. 17.
Схема I не совсем удовлетворительна, т.к. содержит бесконечно большое сопротивление постоянному току (емкость не проводит постоянный ток), чего не наблюдается в тканях организма. Поэтому при низкой частоте схема I даст существенные отклонения расчетных значений импеданса (полного сопротивления) от реального импеданса биоткани. В схеме // при увеличении частоты тока ω емкостное сопротивление стремится к нулю поэтому импеданс схемы также стремится к пулю. Это противоречит опыту.
У живых объектов импеданс уменьшается по мере увеличения частоты только до определенного значения. Для живых тканей характерно более сложное сочетание параллельного и последовательного соединений элементов, например, схема ///.
В состоянии покоя реактивное сопротивление ткани носит только емкостный характер, при возбуждении ткань приобретает индуктивные свойства и обладает индуктивным сопротивлением
XС =ω L.
При анализе электрических свойств ткани рассматриваем только состояние покоя. Найдем импеданс Z простейшей эквивалентной электрической схемы /, рис. Векторная диаграмма имеет вид, показанный на рис.17. Общее напряжение равно
Следовательно, импеданс цепи равен
Угол сдвига фазы между током I и напряжением U найдем из условия.
На рис.19. показана зависимость Z импеданса эквивалентной электрической схемы / (рис.17.) от частоты, построенная но формуле
По сравнению с постоянным током для сопротивления в цепи переменного тока помимо активной нагрузки имеет большое значение наличие в цепи электроёмкости «С»и индуктивности «L».
Сопротивление, которое оказывает электрическая цепь, содержащая компоненты R, L, C,соединённые последовательно называетсяимпедансоми рассчитывается при их последовательном соединении по формуле:
.
Так как в биологических объектах индуктивность незначительна (L »0), то формула для расчёта их импеданса принимает вид:
.
Известно, что активное омическое сопротивление Rбиологической ткани практически не зависит от частоты тока, а ёмкостное - значительно уменьшается по мере увеличения частоты, что приводит к увеличению проводимости всей емкостно-омической системы.
Импеданс тканей организма зависит от их кровенаполнения. На этом основан метод исследования функции кровообращения, называемый реографией. При этом в течение цикла сердечной деятельности регистрируются изменения импеданса определённого участка тканей, на границе которого накладываются электроды.
32) Методы определения фокусных расстояний и оптических сил линз.
Существует множество способов определения оптической силы линзы. Условно их можно разделить на две группы: аналитические методы и методы определения оптической силы линз с помощью специальных приборов.
I. Аналитические методы:
1. Формула тонкой линзы связывает между собой три величины: расстояние от предмета до линзы d, расстояние от линзы до изображения f и фокусное расстояние линзы F.
2. Определить оптическую силу линзы можно используя метод «смещения» (метод Бесселя). Пусть расстояние между предметом и экраном превышает четыре фокусных расстояния (4f). При этом всегда найдутся два таких положения линзы, при которых на экране получаются отчетливые изображения предмета (в одном случае уменьшенное, в другом – увеличенное).
3. Оптическая сила D линзы зависит как от радиусов кривизны R1 и R2 ее сферических поверхностей, так и от показателя преломления nматериала, из которого изготовлена линза.
4. Фокусное расстояние тонкой собирающей линзы можно определить с помощью зрительной трубы, предварительно установив её на бесконечность.
I. Методы определения оптической силы линз с помощью специальных приборов.
В медицине часто используются линзы, оптическую силу которых проблематично измерить аналитическим путем. Например, контактные линзы; цилиндрические, торрические линзы и аксиконы – оптические элементы с большими сферической или хроматической аберрациями.
Дата: 2019-12-10, просмотров: 353.