Устройство и принцип действия датчиков: резистивных (фото-, тензо- и термо-), индуктивных, пьезоэлектрических датчиков.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Резистивные датчики - преобразуют измеряемую величину в омическое сопротивление. Наиболее часто такие датчики применяются для измерения перемещений, для измерения уровня жидкости и пр. На первом этапе измеряемая величина преобразуется в перемещение движка переменного резистора. Общий вид и рабочие характеристики резистивного датчика показаны на рисунке.

 

Параметры и схема резистивного датчика

При этом R1+R2=R0.

Если обозначить Х - угловое или линейное перемещение движка, тогда:

R=f(X).

Резистивные преобразователи применяются в системах, где прилагаемое усилие ≥0,01 Н. Величина перемещения ≥2 мм. Частота питания ≤5 Гц.

В сферах промышленности активно используются такие специализированные устройства как фотоэлектрические датчики, которые позволяют совершать наиболее точное обнаружение поступающего объекта без необходимости физического контакта. Они применяются при установке различного оборудования.

Можно встретить фотоэлектрические датчики аналогового или дискретного вида.

У аналоговых выходной сигнал может меняться пропорционально имеющемуся уровню освещения. Обычно такие устройства применяют при создании элементов освещения, управляемых автоматически.

Дискретные устройства изменяют значение на диаметрально противоположный показатель при достижении определенного уровня освещенности. Они могут выполнять всевозможные задачи на действующей технологической линии и широко используются в промышленности.

Оптический бесконтактный прибор регулирует изменение поступающего светового потока в рабочей области и может срабатывать на большом расстоянии, реагируя на изменение объектов, их отсутствие или присутствие. Конструкция этого прибора имеет две части, которые отвечают за правильное функционирование - это приемник и излучатель. Они могут находиться как в одном подходящем корпусе, так и в разных.

Тензодатчик - измерительный преобразователь деформации твердого тела, вызываемой механическими напряжениями в электрический сигнал, предназначенный для последующей обработки.

Обычно, в реальных устройствах, тензорезистор наклеивается на пружинную диафрагму. Под воздействием приложенного давления диафрагма деформируется, вместе с ней деформируется и тензорезистор.

Классическая система тензорезистивного сенсора, представленная на предыдущей иллюстрации, сделана из металла, проводника и подложки. При деформации в упругих пределах применяемого металла можно многократно нагружать сенсор без увеличения погрешности. Металлы, однако, подлежат усталости при повторных циклах нагружения, и они начинают «течь», если напряженность выше их упругого предела. Это общий источник ошибки металлических тензорезистивных сенсоров: если приложено давление выше нормы, они имеют тенденцию потерять точность из-за пластической деформации подложки и резистора.

В основе принципа работы металлических тензорезисторов лежит явление тензоэффекта, заключающееся в изменении электрического сопротивления проводящего материала при его механической деформации. Основной характеристикой чувствительности материала к механической деформации является коэффициент относительной тензочувствительности , определяемый как отношение относительного изменения сопротивления к относительному изменению длины проводника.

Принцип работы этой группы датчиков(ТЕРМО) основан на том, что в замкнутых контурах проводников или полупроводников возникает электрический ток, если места спайки различаются по температуре. Для измерения температуры, один конец термопары помещают в среду измерения, а другой служит для снятия значений. Единственным, но существенным недостатком этого вида измерителей является их довольно большая погрешность, что недопустимо для многих технологических процессов.

Он применяется в металлообработке, и служит для контроля температуры подшипников. Диапазон измерения от -50 до +120 градусов по Цельсию, выходной сигнал для считывания – аналоговый.

Индуктивный датчик обычно применяется в тех случаях, когда необходимо провести работу с металлическими объектами и предметами.

На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств - всевозможные автоматизированные линии и системы. У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами. У такой работы есть свои особенности и принципы, которые играют важную роль.

Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

Пьезоэлектрические датчики силы в последнее время принимают активное участие в лабораторных исследованиях. Они отличаются повышенной точностью и неплохой проводимостью. Однако важно отметить, что рабочая частота в данном случае находится на уровне 4 Гц. Многие модификации производятся с обычными контактными мембранами. Также стоит отметить, что в магазинах представлены проводные устройства с кварцевыми пластинами. Показатель проводимости у таких датчиков составляет примерно 5 мк. Многие модификации разрешается применять в условиях повышенной влажности. Емкость проводников в данном случае равняется 55 пФ. Модели у датчиков данного типа отсутствуют.

Пьезоэлектрический датчик содержит корпус, инерционное тело, выполненный в виде втулки пьезоэлемент, закрепленный между корпусом и инерционным телом, средство для опоры пьезоэлемента по одной из кромок и средство для опоры аналогичной кромки противоположного торца пьезоэлемента, выполненное в виде кольцевой канавки на корпусе или инерционном теле, в которой размещено упругое разжимное кольцо с обеспечением его защемления между кромкой пьезоэлемента и противоположной ей поверхностью канавки.

Дата: 2019-12-10, просмотров: 277.