Боксование приводит к интенсивному износу рабочих поверхностей колеса и рельса, разрушению вращающихся деталей якоря ТЭД под действием центробежных сил, возникновению кругового огня на коллекторе ТЭД и другим опасным явлениям. Чтобы не допускать их, установлены технические условия устойчивого движения локомотива, которые описываются неравенством [11]
Fкmax ?о.Pсц, (3.3)
где Fкmax - максимально допустимая касательная сила тяги локомотива;
?о - потенциальный (максимальный) коэффициент сцепления;
Pсц - сцепной вес локомотива (вес, приходящийся на движущие колесные пары и участвующий в создании силы тяги).
Pсц = 9,81.nос.2П, кН, (3.4)
где 2П - осевая нагрузка локомотива, т (исходные данные).
Неравенство (3.3) выражает основной закон локомотивной тяги: для обеспечения устойчивости управляемого движения локомотива окружные усилия на ободах движущих колес, создаваемые тяговыми двигателями, не должны превосходить силу сцепления колес с рельсами.
Коэффициент сцепления, а следовательно и сила сцепления, являются случайными величинами, на которые оказывают влияние многочисленные факторы: качество ремонта и содержания локомотивов, метеорологические условия поездки, текущее состояние пути и др. Для локомотивов одной серии при одинаковой скорости движения разброс возможных значений коэффициента сцепления относительно его среднего значения достигает 50% .
Поэтому для обеспечения устойчивости локомотивов против боксования устанавливают так называемый расчетный коэффициент сцепления ?к, величина которого меньше потенциального ?о. При этом сила тяги по сцеплению составляет
Fксц= ?к.Pсц, кН. (3.5)
Расчетный (нормативный) коэффициент сцепления локомотива ?к определяют экспериментальным путем и задают так, чтобы обеспечить практически приемлемую надежность движения полновесных поездов (поездов расчетной массы) по тяжелым подъемам при плохих условиях сцепления.
38. Процесс образования силы тяги.
Обозначив потери на трение как Мтр, а потери на преодоление момента инерции – Мин, можно записать
.
От соотношения величин и направления действия этих сил зависит характер движения поезда.
Если сила тяги больше сил сопротивления движению, то поезд будет двигаться ускоренно, до тех пор, пока силу тяги не уравновесят силы сопротивления. С этого момента поезд будет двигаться с равномерной скоростью.
Если сила тяги меньше сил сопротивления движению, то поезд будет двигаться также с равномерной скоростью.
В первом случае сила инерции будет препятствовать увеличению скорости, а во втором, и при торможении, — уменьшению скорости движения поезда.
Сила тяги тепловоза возникает в результате взаимодействия колес с рельсами при передаче вращающего момента Мдв от тяговых электродвигателей к колесным парам (рис. 1) Вращающий момент колеса
Мк = Мдвц, (1)
где ц — передаточное число зубчатой передачи, может быть за
менен парой сил.
Одна из этих сил Р приложена к центру оси колеса, другая Р1 — в точке К касания бандажа с рельсом. Указанная пара сил, действующая на плече, равном половине диаметра колеса Вк, стремится повернуть колесо вокруг его геометрической оси. Горизонтальное Схема образования силы тяги, усилие от колеса на рельс Р1 воспринимается рельсом и по третьему закону механики порождает
ответную (реактивную) силу Рс от рельса на колесо. Сила сцепления колеса с рельсом Рс препятствует вращению колеса относительно оси. Ее появление неизбежно, так как между бандажом и го
ловкой рельса, плотно прижатыми друг к другу силой Р, возникает молекулярное взаимодействие и
механическое сцепление мелких неровностей. Физически силу сцепления можно представить в виде
упругого упора, не позволяющего колесу проскользнуть по рельсу (в действительности при действии
силы тяги в месте контакта бандажа с рельсом имеет место незначительное упругое проскальзывание).
39. Факторы, определяющие сцепление колеса с рельсом.
Сцепление колеса с рельсом тем сильнее, чем больше сила Ро (см. рис. 2), с которой колесная пара давит на рельс. Сцепление, необходимое для реализации силы тяги, можно получить лишь при условии, что некоторая доля этой силы Ро будет больше силы тяги Fкд, развиваемой данной колесной парой.
Если сила тяги превысит силу сцепления, то сцепление нарушится, колесо начнет проскальзывать по рельсу, при этом сила сцепления резко уменьшится, колесо как бы лишится упора и начнет вращаться все быстрее. Это явление называют боксованием; при нем вращающий момент, развиваемый двигателем и реализуемый колесной парой, падает (из-за уменьшения тока и коэффициента сцепления) и сила тяги снижается, что прежде всего вызывает уменьшение скорости движения поезда; возможно и нарушение коммутации двигателей локомотива.
Чтобы определить наибольшую допустимую силу тяги электровоза, необходимо знать значение коэффициента сцепления.
Коэффициент сцепления зависит от многих факторов: состояния поверхности рельсов (масляные пятна, торфяная или угольная пыль, листья уменьшают сцепление, песок — увеличивает); общего состояния пути; радиуса закругления и возвышения рельсов на кривых участках пути. При небольшом дожде коэффициент сцепления снижается, однако при сильном дожде, смывающем грязь с рельсов, уменьшения коэффициента сцепления не наблюдается.
На коэффициент сцепления влияют также факторы, зависящие от состояния электровоза. Так, повышенный прокат бандажей, разность в диаметрах по кругу катания комплекта колесных пар или колес одной колесной пары, большие поперечные разбеги колесных пар, различие жесткости рессор и пружин, неудачный подбор тяговых двигателей по характеристикам ухудшают сцепление, особенно с ростом скорости движения. Большая инерция (масса, диаметр) вращающихся частей, связанных с двигателем, препятствует развитию боксования.
Дата: 2019-12-10, просмотров: 659.