Логические схемы имеют практическое применение в вычислительной технике. Они используются:
1. Для реализации выполнения математических операций. Что это значит? А значит это следующее. Своё название ( «компьютер») компьютер получил не сразу. Сначала данное устройство называлось электронно-вычислительная машина, т. е. одним из главных назначений ЭВМ было выполнение вычислительных операций. Занималось этим специальное устройство, которое называется процессор. Процессор можно сравнить с умом человека и именно процессор (так же, как и человек в «уме») выполнял ( и выполняет) все математические операции. Как он это делает? Рассмотрим ниже.
2. Для хранения информации. Как он это делает? Также рассмотрим ниже.
Итак, как процессор выполняет математические операции?
Прежде всего, обратите внимание на следующие компоненты:
· Каким образом должна быть представлена информация, чтобы с ней мог работать компьютер? ( В двоичном коде, т.е. в виде 0 и 1).
· Чтобы компьютер мог выполнять математические операции с числами, в какой системе счисления они должны быть представлены? ( В двоичной).
· Почему ? (Потому что двоичную систему счисления наиболее просто реализовать в технических устройствах)
· Какие сигналы подаются на входы логических вентилей? (0 и 1)
Вывод: таким образом в двоичной системе счисления и в алгебре логики информация представлена в виде двоичных кодов.
И второй момент. Для того чтобы максимально упростить работу компьютера, все математические операции (вычитание, деление, умножение и т . д.) сводятся к сложению.
Вспомнит таблицу сложения двоичных чисел. Запишем её в несколько иной форме.
А | В | S | |
0 | 0 | 0 | |
0 | 1 | 1 | |
1 | 0 | 1 | |
1 | 1 | 1 | 0 |
Обратите внимание на дополнительный столбец. Его мы ввели потому, что при сложении происходит перенос в старший разряд. Обозначим его Р и закончим заполнение таблицы.
А | В | Р | S |
0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 |
Проанализируем полученный результат:
· Таблице истинности какой логической функции аналогичен столбец Р? (Логическое умножение).
· Таблице истинности какой логической функции аналогичен столбец S? (Логическое сложения , кроме случая, когда на выходы подаются две единицы).
Логическое выражение, по которому можно определить сумму S, записывается следующим образом: _______
S=(A v B) & (A & B)
Построим к этому логическому выражению логическую схему:
Проследим за прохождением сигнала через cхему:
С какого элемента можно снимать сигнал Р, если мы выяснили, что результат Р соответствует логическому умножению? (С первого вентиля, реализующего операцию конъюнкции)
Полученная нами схема выполняет сложение двоичных одноразрядных чисел и называется полусумматором, т. к. не учитывает перенос из младшего разряда в старший (выход Р).
Для учёта переноса из младшего разряда необходимы два полусумматора.
Более «умным» является устройство, которое при сложении учитывает перенос из младшего разряда. Называется оно полный одноразрядный сумматор.
Сумматор – это логическая электронная схема, выполняющая сложение двоичных чисел. Сумматор является главной частью процессора.
Рассмотрим принц работы одноразрядного двоичного сумматора.
Одноразрядный сумматор должен иметь три входа: А, В – слагаемые и Р0 –перенос из предыдущего разряда и выходы: S – сумма и Р – перенос.
Нарисуем одноразрядный сумматор в виде единого функционального узла:
Построим таблицу сложения:
А | В | Р0 | Р | S |
0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
Логические выражения для Р и S будут иметь следующий вид:
__
S = (A v B v P0 ) & P0 v (A & B & P0 )
P = (A & B) v (A & P0 ) v (B & P0 )
Но процессор, как правило, складывает многоразрядные двоичные числа. Например, 1012 + 1102 = 10112 . Для того чтобы вычислить сумму n - разрядных двоичных чисел, необходимо использовать многоразрядный сумматор, в котором на каждый разряд ставится одноразрядный сумматор и выход – перенос сумматора младшего разряда подключается к выходу сумматора старшего разряда.
Пример:
Сложить числа 1012 + 1102 =10112
Ответ записывается с конца :
1012 +1102 =10112
Триггер ( trigger – защёлка, спусковой крючок). – это устройство, позволяющее, запоминать, хранить и считывать информацию. Для обозначения этой схемы в английском языке чаще употребляется термин « flip- flop», что в переводе означает «хлопанье». Это звукоподражательное название электронной схемы указывает на её способность почти мгновенно переходить (перебрасываться) из одного электрического состояния в другое и наоборот.
Каждый триггер хранит 1 бит информации, т. е. он может находится в одном из двух устойчивых состояний – логический «0» или логическая «1».
Триггер способен почти мгновенно переходить из одного электрического состояния в другое и наоборот.
Логическая схема триггера выглядит следующим образом:
|
|
Обычная схема триггера выглядит так:
Входы триггера расшифровываются следующим образом – S (от английского Set – установка) и R – (Reset – сброс). Они используются для установки триггера в единичное состояние и сброса в нулевое. В связи с этим такой триггер называется RS -триггер.
Выход Q называется прямым, а противоположный – инверсный. Сигналы на прямом и инверсном выходах, конечно же, должны быть противоположны.
Рассмотрим как работает эта схема.
Пусть для определённости на вход S подан единичный сигнал, а R = 0.
Тогда независимо от состояния другого входа, который подсоединён к выходу Q (иначе говоря, вне зависимости от предыдущего состояния триггера), верхний по схеме элемент ИЛИ – Не получит на выходе 0 (результат ИЛИ, естественно, равен 1, но его инверсия – 0). Этот нулевой сигнал подаётся на вход другого логического элемента, где на втором входе R тоже установлен 0. в итоге после выполнения логических операций ИЛИ – НЕ над двумя входными нулями этот элемент получает на выходе 1, которую возвращает первому элементу на соответствующий вход. Последнее обстоятельство очень важно: теперь, когда на этом входе установилась 1, состояние другого входа, (S) больше не играет роли. Иными словами, если даже теперь убрать входной сигнал S, внутренне распределение уровней сохранится без изменений. Поскольку согласно нашим рассуждениям Q = 1, триггер перешёл в единичное состояние, и, пока не придут новые внешние сигналы, сохраняет его. Итак, при подаче сигнала на вход S триггер триггер переходит в устойчивое единичное состояние.
При противоположной комбинации сигналов R =1 и S =0 вследствие полной симметрии схемы все происходит совершенно аналогично, но теперь на выходе Q уже получится 0. Иными словами, при подаче сигнала на вход R - триггер сбрасывается в устойчивое нулевое состояние.
Особо отметим, что окончание действия сигнала в обоих случаях приводит к тому, что R=0 и S=0. мы видели, что при этом триггер сохраняет на выходе Q тот сигнал, который был установлен входным импульсом (S или R). Отсюда такой режим часто называют режимом хранения информации. Итак, при отсутствии входных сигналов триггер сохраняет последнее занесённое в него значение сколь угодно долго.
Оставшийся режим S=1 и R=1, когда сигнал подаётся на оба входа одновременно, считается запрещённым, поскольку в этом случае после снятия входных сигналов (особенно одновременно!) результат непредсказуем.
Можно заполнить следующую таблицу:
Вход S | Вход R | Выход Q | ___ Выход Q | Режим регистра |
1 | 0 | 1 | 0 | Установка 1 |
0 | 1 | 0 | 1 | Установка 0 |
0 | 0 | Последние значения | Хранение информации | |
1 | 1 | запрещено |
Итак, мы выяснили, как работает триггер.
Без преувеличения триггер является одним из существенных узлов при проектировании ЭВМ. Так как триггер может хранить только 1 бит информации, то несколько триггеров объединяют вместе.
Полученное устройство называется регистром. Регистры содержатся во всех вычислительных узлах компьютера – начиная с центрального процессора, памяти и заканчивая периферийными устройствами, и позволяют также обрабатывать информацию. В регистре может быть 8, 16, 32 или 64 триггера.
Вопросы:
1. Назначение сумматора и триггера
2. Области использования сумматора и триггера
Дата: 2019-12-10, просмотров: 556.