Построение экспериментальной модели
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Основная задача при разработки модели будет состоять в моделировании исполнительной системы робота, поскольку закон терминального управления будет рассчитываться именно для этой подсистемы робототехнического комплекса. Наибольшее распространение в робототехнике получили электрические приводы на основе двигателей постоянного тока аналогового типа [1]. Однако широкое использование управляющей вычислительной техники и в первую очередь микропроцессорных систем приводит к необходимости решения задачи создания систем сопряжения аналоговых и цифровых сигналов и разработки силовых управляющих преобразователей. Для управления двигателями робота наиболее целесообразно использование сигнала с широтно-импульсной модуляцией, что обеспечивает самый экономичный режим работы усилителя – импульсный и позволяет упростить канал вывода информации от управляющей ЭВМ.

Одно из важнейших требований, предъявляемых к исполнительным системам роботов манипуляторов, заключается в необходимости обеспечения высокой степени их надежности. Выполнение этого требования особенно важно в отношении дистанционно управляемых манипуляционных роботов, предназначенных для работы в экстремальных условиях, так как агрессивная внешняя среда оказывает существенное влияние на конструктивные элементы манипулятора. Самым уязвимым с этой точки зрения звеном исполнительной системы является электродвигатель. Наибольшей степенью надежности в агрессивных средах обладают электродвигатели, в конструкциях которых отсутствуют контактные коммутационные элементы. Одной из разновидностей таких двигателей является трехфазный электродвигатель переменного тока с короткозамкнутым ротором. Указанные обстоятельства и целый ряд других существенных преимуществ асинхронных электродвигателей вызывают в последнее время повышенный интерес разработчиков к созданию и широкому внедрению исполнительных систем на основе этих двигателей. Синтез и исследование таких систем имеют свою специфику. Рассмотрим в общем виде инженерный подход к проектированию исполнительных следящих систем с асинхронным короткозамкнутым двигателем.

При выводе дифференциальных уравнений асинхронной машины обычно принимают следующие допущения: фазные обмотки ротора выполнены одинаковыми и расположены по окружности статора симметрично, воздушный зазор равномерен, машины имеют синусные обмотки, и поле в воздушном зазоре определяется формой приложенного напряжения, поверхность ротора и статора считается гладкой, потери в стали не учитываются. Кроме того, при исследовании асинхронного двигателя, питающегося от преобразователя частоты, не учитывается влияние высших гармоник питающего напряжения на работу машины. В системе координат, вращающейся с произвольной скоростью , дифференциальные уравнения имеют вид [13]


,   (5.1)

 

где U1, i1, i2, – вращающиеся векторы мгновенных значений напряжения статора и токов ротора соответственно; r1, r2 – активные сопротивления обмоток статора и ротора; y1, y2 – вращающиеся векторы мгновенных значений потокосцеплений статора и ротора соответственно; Lm – взаимная индуктивность статора и ротора; Мдв – вектор электромагнитного момента двигателя;  – величина, комплексно сопряженная i2; W – угловая скорость ротора; рп – число пар полюсов.

В литературе приводятся структурные схемы двигателя, полученные на основе его дифференциальных уравнений. Однако техническая реализация системы управления на базе таких структур оказывается сложной, поэтому целесообразно определить передаточную функцию двигателя, предварительно исследовав экспериментально либо рассчитав на ЭВМ переходные процессы в нем.

 


Дата: 2019-12-10, просмотров: 204.