Энергетические характеристики случайных процессов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

К энергетическим характеристикам СП относят корреляционную функцию, спектральную плотность мощности и непосредственно связанные с ними параметры СП.

В разделе 2 было дано определение корреляционных функций как смешанных центральных моментов второго порядка соответственно автокорреляционной и взаимнокорреляционной функций, т.е.

.

 

Основные свойства автокорреляционной функции:

– свойство симметрии , для стационарных процессов – четность ;

– свойство ограниченности , для стационарных процессов ;

– свойство неограниченного убывания с ростом аргумента (для эргодических процессов) ;

– свойство положительной определенности интеграла

;

– размерность соответствует квадрату размерности случайного процесса.

Это свойство следует из определения спектральной плотности мощности (для случайных напряжений и тока через сопротивление 1 Ом), которое будет приведено ниже.

Для взаимнокорреляционной функции аналогично можно записать:

 

; ;

; .

 

Ввиду ограниченности корреляционной функции частот используют нормированные корреляционные функции


; ,

причем ; .

 

Для более компактного описания свойств случайного процесса вводят понятие интервала корреляции, определяющего интервал времени, на котором существует связь между значениями процесса.

Основные определения интервала корреляции:

– интегральный (для положительно определенных корреляционных функций) . Геометрически он характеризует ширину основания прямоугольника, равновеликого по площади функции k(t) при t > 0 (рис. 17а);

– абсолютный интервал корреляции  (в отличие от предыдущего может использоваться для знакопеременных функций ) (рис. 17б);

– квадратичный интервал корреляции ;

– максимальный интервал корреляции (на уровне a) (рис. 18)

 

.


Рис. 17

 

Рис. 18

 

Обычно уровень a выбирается исходя из рассматриваемой задачи и имеет значения 1/e; 0,1; 9,05; 0,01 и т.д.

Последнее определение не является более произвольным, чем предыдущие, так как выбор конкретного вида функционала протяженности произволен и определяется удобством математического решения конкретной задачи. Практически этот интервал корреляции используется в радиоизмерениях для определения интервала, вне которого случайные величины в сечениях случайного процесса можно считать некоррелированными. Достоверность такого предположения определяется выбором уровня a.

Большое значение в статистической радиотехнике имеют спектральные характеристики СП. При этом используются различные интегральные преобразования процесса вида

 

.

 

При исследовании линейных систем с постоянными параметрами особое значение имеет ядро преобразования вида , так как отклик линейных систем на гармоническое воздействие также является гармоническим.

Преобразование Фурье от k-й реализации СП дает также случайную функцию частоты, зависящую от номера реализации:

 

.

 

В условиях реального наблюдения можно получить лишь текущий спектр реализации за интервал наблюдения T

 

.

 

Приведенные выражения в существенной степени формальны, так как для многих СП условия применимости преобразования Фурье не выполняются, и интеграл не сходится к какому-либо определенному пределу.

Определим квадрат модуля спектральной плотности k-й реализации

 

.

Предполагая процесс стационарным и центрированным, заменяя  и производя статистическое усреднение по множеству реализаций, определим:

 

.

 

Разделив обе части полученного равенства на T и беря предел , получим

 

.

 

Поясним физический смысл этой характеристики. Учитывая теорему Релея

 

,

определим ; ;

;

; .

 

Таким образом, спектральная плотность мощности или энергетический спектр – это усредненная по всем реализациям функция распределения мощности по частотам.

Следовательно, спектральная плотность мощности и корреляционная функция связаны преобразованием Фурье (теорема Винера – Хинчина):

 

                       (9)

 

Полагая t = 0, получим

 

.

 

Учитывая свойство четности корреляционной функции, запишем

 

,

.

 

В полученных формулах G(w) определялась для положительных значений круговой частоты w, причем G(w) = G(–w). В отличие от такого «двухстороннего» математического спектра, введем односторонний физический спектр:

 

.

 

Тогда формулы теоремы Винера – Хинчина примут вид:

                   (10)

 

Часто используется нормированная спектральная плотность мощности

 

.

 

Из определения G(w) следуют методы его экспериментального определения (рис. 19). А именно: измеряется квадратичным прибором среднеквадратическое отклонение процесса в узкой полосе (с помощью полосового фильтры с прямоугольной АЧХ), возводится в квадрат, а затем делится на эту полосу Dfэ (полоса такая, что S(f0) » const в пределах Dfэ) (рис. 20).

 

Рис. 19                            Рис. 20

 

Тогда .

 

Для одиночного колебательного контура , где Q – добротность контура, следовательно


.

 

Спектральная плотность мощности не отражает фазовой структуры сигнала. Две совершенно разные зависимости могут иметь одинаковую спектральную плотность мощности.

Поскольку G(w) и K(t) связаны преобразованием Фурье, для них справедливы основные теоремы о спектрах.

Ширина спектра определяется так же, как и интервал корреляции.

Эффективная (или неудачное название – энергетическая) ширина спектра

 

.

 

Определяют также ширину спектра на уровне a: .

Рассмотрим связь интервала корреляции и ширины спектра.

 

Так как , а , то

.          (11)

 

Таким образом, произведение  – порядка единицы.

Различают широкополосные и узкополосные процессы (рис. 22а и б).


а                                                  б

Рис. 22

 

Для узкополосных процессов . Поскольку для узкополосных случайных процессов значение спектральной плотности мощности при нулевой частоте всегда равно нулю (или очень близко к нему), то корреляционная функция является всегда знакопеременной и ее площадь равна нулю (из теоремы Винера – Хинчина).

Один из широко распространенных в теории широкополосных процессов – белый шум с равномерным спектром . Его корреляционная функция равна

 

.

 

Противоположный случай – узкополосный процесс – квазидетерминированный СП с дискретным спектром

 

,

 

где x1, x2 – случайные величины, не зависящие от t, .

Функция X(t) представляет собой гармоническое колебание со случайной амплитудой  и фазой , распределение которого не зависит от времени. Этот процесс будет стационарным лишь при  и при . Тогда  зависит только от t, причем x1 и x2 некоррелированы.

 

В этом случае ;

. (рис. 23)

 

Рис. 23

 

Для стационарных СП X(t) и Y(t) вводят также взаимную спектральную плотность мощности

 

;

; ;

; .

 

Взаимная спектральная плотность мощности двух процессов комплексная, если взаимная корреляционная функция нечетная, действительная часть такой спектральной плотности четная, а мнимая – нечетная функция: .

Для суммы стационарных и стационарно-связанных процессов существует соотношение

 

.

 





Дата: 2019-12-22, просмотров: 261.