Глава I . Вероятностно - статистическая линия в базовом школьном курсе математики
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

Глава I. Вероятностно - статистическая линия в базовом школьном курсе математики

1.1 Статистическое мышление и школьное математическое образование

1.2 Психолого-педагогические аспекты изучения теории вероятностей в средней школе

1.3 Тематическое планирование к учебникам Федерального комплекта

Глава II. Методические рекомендации преподавания основ теории вероятностей в средней школе

2.1 Вероятность случайных событий

2.2 Дискретность пространств элементарных событий

2.3 Классическое и статистическое определение вероятности

2.4 Алгебра событий

Глава III. Факультативный курс «Элементы теории вероятностей» для 10 – 11 классов

3.1 Внеклассная работа по математике, факультативные занятия 2. Случайные события. Урок – лекция

3.2 Классическое определение вероятности. Уроки-практикумы

3.2.1 Лабораторная работа

3.2.2 Практическая работа

3.3 Геометрическая вероятность. Урок – семинар

3.4 Основы теории вероятностей. Урок – консультация

3.5 Урок – игра «Восхождение на пик знаний»      

Заключение

Список литературы

Приложение

 



Введение

До недавнего времени Россия оставалась одной из немногих стран с развитой системой образования, где вероятностно-статистические знания практически всегда оставались за пределами школьного обучения. С наступлением 21 века мы окончательно убедились в неотвратимости пришествия в среднюю школу стохастики, изучающей случайные явления.

Идея введения в школьную математику элементов теории вероятностей и статистики является привлекательной для наших педагогов. С другой стороны, большинство из них слабо представляют содержательно-методические основы обучения стохастики в школе, по этой причине многие с настороженностью и недоверием относятся к данному нововведению.

Поэтому в настоящее время одной из наиболее актуальных проблем методики преподавания математики является проблема введения в школьный курс вероятностно – статистической линии, которая давала бы возможность познакомить всех учащихся с миром случайного, с самых ранних лет формировать у них умение накапливать систематизировать представления о свойствах окружающих явлений, в большинстве своем имеющих стохастическую природу.

 К особенностям новой линии можно отнести то, что в ней много эмпирики и рассуждений, мало формул, отсутствуют громоздкие вычисления, открыт большой простор для творческой деятельности учащихся.

Эта линия требует своеобразных форм, средств и приемов обучения, соответствующих возрасту и интересам учащихся: дидактических игр и экспериментов, живых наблюдений и предметной деятельности.

Изучение вероятностно – статистического материала должно быть направлено на развитие личности школьника, расширять возможности его общения с современными источниками информации, совершенствовать коммуникативные способности и умения ориентироваться в общественных процессах, анализировать ситуации и принимать обоснованные решения, обогащать систему взглядов на мир осознанными представлениями о закономерностях в массе случайных фактов.

Сегодня мы имеем первый комплект учебников для массовой школы, содержащие разделы по теории вероятностей. В связи с этим многие учителя оказались в нелегком положении. Большинство из них не помнит даже самих «элементов», не говоря уже о какой – то специальной методике их преподавания в школе, направленной на развитие особого типа мышления и формирования недетерминированных представлений.

 Поэтому остро встает проблема методической готовности учителей, способных к успешной реализации вероятностно-статистической линии в школьном курсе математики.

Объектом исследования является процесс обучения элементам теории вероятностей на факультативных занятиях в средней школе.

В качестве предмета исследования выступает методика преподавания основ теории вероятностей в общеобразовательной школе.

Цель исследования – теоретически обосновать и содержательно представить факультативной курс «Элементы теории вероятностей» для 10-11 классов средней школы.

Исходя из цели исследования, были поставлены следующие задачи исследования:

1) проанализировать современные тенденции в исследованиях, посвященных вопросам введения в школьную математику элементов теории вероятностей и математической статистики;

2) представить практический материал – решение задач по данной теме, с выработанными методическими указаниями и рекомендациями;

3) разработать структуру, содержание и методику проведения факультативного курса «Элементы теории вероятностей» в старших классах средней школы;

4) провести апробацию.

В ходе решения поставленных задач использовались следующие методы исследования:

1) изучение и анализ учебно–методической и психолого-педагогической литературы по проблеме исследования;

2) теоретический анализ проблемы, определение основных положений исследования;

3) обобщение и анализ теоретико-методического материала;

4) решение задач по данной теме;

5) экспериментальное преподавание (апробация) направленное на выявление эффективности предлагаемой методики проведения факультативного курса «Элементы теории вероятностей» для 10-11 классов общеобразовательной школы.

 



Ч Б Ч Б

Рис. 6.

 

Р(А)=

 

Поясним приведенное решение. Стрелки вероятностного графа (рис.6) изображают возможные исходы испытаний, обозначения которых ставятся возле концов стрелок. В нашем случае – это буквы Ч и Б. Рядом со стрелками записываются соответствующие безусловные или условные вероятности. Каждая цепочка стрелок изображает один из исходов совместных испытаний – одну из возможных комбинаций извлечения из урны шаров: (Ч,Ч), (Ч,Б), (Б,Ч), (Б,Ч). По формуле (4) вероятности этих комбинаций получаются перемножением безусловных и условных вероятностей, записанных вдоль цепочек. Извлечению разноцветных шаров благоприятствуют исходы (Ч,Б) и (Б,Ч). сложив их вероятности, найдем искомую вероятность Р(А).

Построением таблиц и вероятностных графов можно решать и более сложные задачи, когда проводятся три, четыре и даже пять совместных испытаний. Например, до пяти раз подбрасывают монету или из урны без возвращения извлекают три шара. Уровень таких задач достаточно высок для средней школы, и учащиеся, овладевшие алгоритмами построения таблиц и графов, успешно с ним справляются [24].

Школьникам предлагается также решать обратные задачи о нахождении вероятностей гипотез по предварительно заданной информации. Вероятность гипотезы вводится расширением понятия условной вероятности.

Напомним, что условная вероятность была введена для зависимых событий при рассмотрении совместных зависимых событий. Однако при проведении любых испытаний можно сделать предположение (выдвинуть гипотезу) о возможности наступления любого конкретного события А, если заранее известно, что в этих испытаниях наступило (или, наступит), например событие В. Тогда вероятность, что это предположение оправдается (вероятность гипотезы), есть условная вероятность , вычисляемая по формуле

 

=

 

В заключение хочется подчеркнуть, что учащимся 5 – 9 классов вполне по силам изучение элементов теории вероятностей на примерах простых испытаний с небольшим числом исходов. Математический аппарат, которым они должны предварительно овладеть – школьный курс арифметики. А предлагаемая аксиоматика, алгоритмы построения таблиц исходов испытаний и вероятностных графов доступны для школьного понимания.

Алгебра событий

После того как учащиеся познакомятся с элементарными понятиями теории вероятностей: события, достоверные и невозможные события, противоположное событие, несовместные события, независимые события – и научатся вычислять вероятность события на основе классического определения вероятности, полезно потренировать школьников в употреблении терминов, относящихся так называемой алгебре событий. При этом имеет смысл установить связь между алгеброй событий и алгеброй множеств. Понятие множеств учащимся интуитивно ясно. Не вызывает трудности и тренировка в операциях над множествами: включение, объединение, пересечение, дополнение. Представления об этих операциях лежат в основе всей математики и, в частности, в основе теории вероятностей. Достаточно посвятить им одно - два занятия, и учащиеся уже хорошо ориентируются в операциями над множествами. Теоретико-множественные представления можно призвать на помощь при обучении языку алгебры событий [23].

Для того чтобы установить параллель между языком теории множеств и языком алгебры событий, полезно составить вместе с учащимися таблицу, которая приведена ниже.

С помощью таблицы и рисунка целесообразно разобрать с учащимися задания по тематике, описывающей ряд однотипных испытаний. Но сначала необходимо ввести обозначения, которыми будем пользоваться в дальнейшем. Представим себе три одинаковые урны, в каждой из которых лежат неразличимые на ощупь белые и черные шары.

 

  Обозначения  

Интерпретация

 

Теории множеств Теории вероятностей

Ω  Элемент, точка  Исход, элементарное событие
Универсальное множество, т.е. множество всех рассматриваемых точек Достоверное событие исходов, т.е. множество всех элементарных событий
Ø  Пустое множество Невозможное событие
A,B  Подмножество универсального множества Случайное событие
A=B Подмножества А и В равные События А и В равносильные
A B Объединение множеств А и В, т.е. множество точек, входящих или в А, или и В Событие, состоящее в том, что произошло А или В
A+B Сумма множеств, т.е. объединение непересекающихся множеств Событие, состоящее в том, что произошло одно из несовместных событий либо А, либо В
A B;AB Пересечение множеств А и В, т.е. множество точек, входящих и в А, и в В Событие, состоящее в том, что одновременно произошли события А и В
A B= Ø Множество А и В не пересекаются События А и В несовместны( не могут наступать одновременно)
A\B Разность множеств А и В, т.е. множество точек, входящих в А, но не входящих в В Событие, состоящее в том, что произошло А, но не произошло В
A∆B A∆B=(A\B) (В\А) Событие, состоящее в том, что произошло одно из событий А или В, но не оба одновременно

 

Рассматриваются такие события (гипотезы):

 

 

H1 - выбрали первую урну,

H2 - выбрали вторую урну, A - вынули из урны белый шар,

H3 – выбрали третью урну,  - вынули из урны черный шар

Задача 1. Запишите с помощью символов следующие события.

1) выбрали либо первую, либо вторую урну;

2) выбрали какую – то одну урну;

3) выбрали не первую урну;

4) белый шар вынули из второй урны;

5) черный шар вынули из третей урны;

6) белый шар вынули не из первой урны;

7) из какой – то урны выбрали черный шар.

Ответ. 1) H1+H2;

2) H1+H2+H3;

3) = H2+H3;

 4) A H2;

 5) ;

 6) A =A(H2+ H3);

7) ( H1+H2+H3).

Задача 2. Дайте словесное толкование следующим событиям:

1. а) AH1; б) H2; в) .

2. а) AH1+AH2+AH3; б) H1+ H2+ H3.

3. а) (A\H1) (H1\A); б)( \H2) (H2\ ).

Ответ.1. а) Белый шар вынули из первой урны;

б) черный шар вынули из второй урны;

в) черный шар вынули не из третьей урны

2. а) Белый шар вынули либо из первой, либо из второй, либо из третьей урны;

б) черный шар вынули либо из первой, либо из второй, либо из третьей урны;

3. а) Либо вынули белый шар не из первой урны, либо из первой урны вынули черный шар;

б) либо вынули черный шар не из второй урны, либо из второй извлекли белый шар.

Задача 3.установите, верны ли равенства:

а) H1+H2+H3=W;

б) А+ =W;

в) А = Ø – и дайте им словесное толкование.

Ответ. Все равенства верны.

а) выбрали либо первую, либо вторую, либо третью урну. По условию испытания это событие достоверное;

б) достоверное, что вынули либо черный, либо белый шар;

в) вынутый шар не может быть одновременно и белым и черным.

На этом этапе, когда язык алгебры событий учащимися достаточно усвоен, вводятся теоремы сложения и умножения вероятностей, после которых следуют приведенные ниже упражнения.

Задача 4. Известно, что в каждой из трех урн число белых шаров равно числу черных (например, см. рисунок). Подсчитайте указанные ниже вероятности при условии, что шар извлекается наугад из наугад выбранной урны.

1.P(H1), P(H2), P(H3).

2.P(H1+H2+H3).

3.P(A), P( ).

4.P(AH3),P( H1).

Ответ. 1. P(H1)= P(H2)= P(H3)=  - вероятность того, что выбрана первая (вторая, третья) урна.

2. P(H1+H2+H3)= + = =1 – вероятность того, что выбрана одна из урн, равна вероятности достоверного события, т.е. 1.

 3.P(A)= P( )=  - вероятность того, что будет вынут белый (черный) шар.

 4. P(AH3)=P( H1)= * =  вероятность того, что будет извлечен белый шар из третьей урны (черный шар из первой урны).

Следующий этап - изучение условной вероятности, т.е. вероятности события А, если известно, что оно может наступить, если прежде произошло одно из событий H1,H2,H3.

В этом месте также необходимо потренироваться в правильном употреблении терминов и символов.

Задача 5. Запишите словами, в чем состоят указанные ниже события, и вычислите их вероятность.

а) A\H1; б) \H2; в) \ .

Ответ. а) выбрали первую урну, а затем из нее извлекли белый шар,

P(A\H1)=

б) выбрали вторую урну, а затем из нее вынули черный шар,

P( \H2)= ;

в) выбрали первую либо вторую урну, а затем из какой –то из них достали черный шар,

 

P( \ )=

 

Изучив понятие условной вероятности, есть возможность перейти к формуле полной вероятности.

Вероятность события А, которое может наступить при условии появления одного из несовместных событий (гипотез) H1,H2,H3, образующих полную систему событий, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

Р(А)=P(H1)P(A\H1)+P(H2)P(А\H2)+P(H3)P(А\H3) – формула полной вероятности. Рассмотренная проблематика позволяет связать ее с более сложным вопросом, к которому обычно приступают много позже. Речь идет о формуле Байеса. Объединяя изучения формулы полной вероятности и формулы Байеса, преподаватель достигает настоящего укрупнения дидактических единиц и получает возможность лучше разъяснить ситуации, связанные с обеими формулами. В самом деле, формула полной вероятности употребляется для подсчета вероятности предложения о том, что событие А может наступить, а формула Байеса применяется тогда, когда событие А наступило.

Пусть известно, что:

а) событие А может наступить при условии появления одного из событий H1,H2,H3, образующих полную систему событий;

б) известны условные вероятности P(A\H1), P(А\H2), P(А\H3) события А относительно всех событий Н123.

В результате испытание оказалось, что событие А произошло. Какова вероятность того, что оно наступило вместе с событием Нi, где I=1,2,3. другими словами, найти вероятность P(H1\A), P(H2\ А), P(H3\ А).

Эту задачу решает формула Байеса:

 

P(H1\A)= ,

 

где I=1,2,3.

Итак, показанная линия изучения основ теории вероятностей на базе средней школы, на этой теме завершается. Материал параграфов 1,2,3 может быть рассмотрен в классе со всеми учащимися, а 4 параграф при более углубленном изучении – на кружке или факультативе.

 



Урок-лекция

Тема урока: Случайные события.

Цель урока:

1) познакомить учащихся с понятием случайного события;

2) развить интерес к теории вероятностей, математики;

3) способствовать развитию логического мышления, воображения.

Оборудование: доска, мел, монетка, кубик, набор задач.

Структура урока.

Организационный момент.

2. Сообщение темы и цели занятия.

Определение.

Два события называются несовместными; если они в рассматриваемом опыте не могут произойти одновременно. События, которые в рассматриваемом опыте могут произойти одновременно, называются совместными.

Например, в опыте с броском игральной кости события Q4 и Qnp совместны. Действительно, пусть выпало 2 очка. Число 2 четное, следовательно, произошло событие Q4 . С другой стороны, число 2 простое, следовательно, произошло событие Qпр. Аналогично события Q3 и Qпр тоже совместны. Однако между совместностью пары событий Q3 иQпр и пары событий Qч и Qпр наблюдается существенная разница. Для первой пары из того, что произошло событие Q3, автоматически следует, что произошло и событие Qпр. Для второй же пары этого нет. В самом деле, предположим, что выпало 4 очка, т. е. произошло событие Qч . А событие Qпр при этом не произошло, так как 4 не является простым числом. Таким образом, для второй пары из того, что произошло одно из совместных событий, еще не следует, что автоматически произошло и другое.

Заметим еще одно существенно важное обстоятельство. В опыте с броском игральной кости события Q1 , Q2, ..., Q6 как бы играют особую роль для этого опыта. Сущность этой особой роли состоит в том, что в результате опыта одно из этих событий обязательно происходит, а любые два из них несовместны.

Определение. Множество событий рассматриваемого опыта, одно из которых в результате опыта обязательно происходит, а любые два из них несовместны, называется множеством элементарных событий (или исходов) этого опыта, а каждое событие из этого множества называется элементарным событием рассматриваемого опыта или его исходом.

Так, в опыте с броском игральной кости события Q1 , Q2, ..., Q6образуют множество исходов этого опыта. Подчеркнем, что для одного и того же опыта можно рассматривать разные множества исходов.

Например, для опыта с броском игральной кости можно рассматривать множество из двух исходов — Qч и Qн. В самом деле, эти события несовместны, ив результате опыта (броска игральной кости) одно из них обязательно происходит. От того, как выбрано множество элементарных событий опыта, зависит большая или меньшая сложность решения поставленной вероятностной задачи: при удачном выборе решение сильно упрощается, а при неудачном или усложняется, или вообще не может быть найдено.

Итак, мы познакомились со случайными событиями и простейшим» видами связей между ними.

Задание.

Ученика поручается подбрасывать кубик несколько раз. Cтавятся следующие вопросы. Какие из следующих событий являются возможными (случайными), а какие достоверными:

1) кубик, упав, останется на ребре;

2) выпадет только одно из чисел: 1, 2, 3, 4, 5, 6 ;

3) выпадет число 6;

4) выпадет число 4;

5) выпадет четное число;

6) выпадет нечетное число;

7) выпадет число, которое делится на 5;

8) выпадет число, которое делится на 7;

9) выпадет число, которое делится на 3;

10) не выпадет никакое число.

Лабораторная работа

Тема урока: Классическая и статистическая вероятности.

Цель урока:

1) вывести формулу вероятности;

2) развить творческую активность учащихся;

3) воспитать самостоятельность, взаимопомощь.

Оборудование: доска, мел, карточки, набор монеток и канцелярских кнопок. Структура урока.

Организационный момент.

2. Сообщение темы и цели занятия.

Задание.

1. Являются ли равновероятными следующие события:

а) Опыт—бросок монеты; события: «выпал герб» и «выпала цифра».

б) Опыт —бросок неправильной монеты (погнутой); события: «выпал герб» и «выпала цифра».

в) Опыт — выстрел по цели; события: «промах» и «попадание».

г) Опыт — бросок двух монет; события: А = «выпало два герба», В= «выпало две цифры» и С = «выпали герб и цифра».

д) Опыт — бросок игральной кости; события; А == «выпало не менее трех очков» и В = «выпало не более четырех очков».

е) Опыт — вынимание косточки домино из полного набора 28 косточек; события: А = «вынуто 6», В = «вынуто пусто».

5. Итоги урока. Вопросы для повторения:

1) Что такое вероятность события?

2) Как определяется частота?

3) Какие подходы существуют для определения вероятности?

6. Постановка домашнего задания.

Задания.

1. Приведите пример опыта, в котором можно указать три попарно несовместных события, не образующих множество исходов опыта.

2. Приведите пример опыта и четырех его событий, таких, чтобы эти четыре события не составляли множество исходов опыта, но одно из них в результате опыта происходит обязательно.

3. Приведите пример опыта с тремя исходами.

 

Практическая работа

Тема урока: Классическое определение вероятности.

Цель урока:

1) закрепить знание формулы;

2) способствовать развитию навыка самостоятельного применения знаний при решении задач, внимания;

3) воспитать усидчивость, терпение.

Оборудование: доска, мел, набор задач.

Структура урока.

Организационный момент.

2. Сообщение темы и цели занятия.

Изучение нового материала.

Учитель.Изучение понятия вероятности события обычно начинается с самого простого частного случая, — так называемого классического определения. Оно опирается на понятие равновероятности событий.

Начнем с примеров. В опыте с броском монеты события Г=«выпал герб» и Ц = «выпала цифра» очевидно равновероятны. Это утверждение основано на том, что монета симметрична и однородна. В опыте с броском игральной кости события Q1, Q2, ..., Q6 тоже, очевидно, равновероятны. Это следует из однородности материала кости и ее симметричной формы. Таким образом, равновероятность событий обычно устанавливается исходя из того, что условия опыта симметричны относительно рассматриваемых событий. При этом симметрия понимается в широком смысле этого слова и геометрическая симметрия, и физическая симметрия (например, однородность материала, из которого изготовлена игральная кость или монета) и так далее. То есть для того чтобы можно было начать, решение задачи средствами теории вероятностей, необходимо, чтобы вероятности некоторых событий в задаче уже были указаны. Откуда же эти вероятности берутся?" Их дают те конкретные науки, в рамках которых возникла решаемая вероятностная задача. При этом зачастую основную роль играют соображения не математические, а той науки, в рамках которой возникла задача. Понятие равновероятности событий — это есть одна из форм указания начальных вероятностей.

Теперь можно дать классическое определение вероятности случайного события.

Определение.Пусть множество исходов опыта состоит из n равновероятных исходов. Если m из них благоприятствуют событию А, то вероятностью события А называется число p(A)=

Решение задач.

Задание 1. Какова вероятность того, что при броске игральной кости выпадет четное число очков?

Решение. В опыте «бросок игральной кости» мы имеем 6 равновероятных исходов: события Q1 , Q2, ..., Q6. Нас интересует вероятность события Qч. Этому событию благоприятствуют три исхода опыта: события Q2, Q4 и Q6. Следовательно n = 6, т = 3, а искомая вероятность

 

Задание 2. Бросали две монета. Какова вероятность того, что на каждой монете выпал герб?

Решение. Сразу напрашивается множество исходов, состоящее из трех событий (здесь опыт — фосок двух монет): «на обеих монетах выпал герб» = Г, «на обеих монетах выпала цифра» = Ц и «на одной монете выпал герб, а на другой монете выпала цифра» = А. Но интуитивно ясно, что это не равновероятные события — событие А имеет больше шансов появиться. Чтобы получать равновероятные исходы, внесем в этот опыт некоторое дополнение, которое не изменит вероятностной структуры задачи. Именно, возьмем одну монету медную, а другую серебряную. Это добавление позволит выделить равновероятные исходы испытания. Ими будут события Г, Ц, А1= «на серебряной монете выпал герб, на медной монете выпала цифра» и А2 = «на серебряной монете выпала цифра, на медной монете выпал герб». Эти четыре события уже равновероятны, поскольку условия опыта относительно них симметричны. Они также образуют множество исходов рассматриваемого опыта. Теперь все подготовлено для того, чтобы можно было обратиться к теории вероятностен {до сих пор мы пользовались условиями задачи для выяснения некоторых основных, исходных вероятностей: в нашем случае это сводилось к выявлению равновероятных исходов испытания). Равновероятных исходов испытания 4, т. е. п= 4. Нас интересует вероятность события Г. Ему благоприятствует только один исход, т. е. т =1. Следовательно, искомая вероятность

 

Задание 3. Из семи одинаковых билетов один выигрышный. Семь человек по очереди и наугад берут (и не возвращают обратно) по одному билету. Зависит ли вероятность взять выигрышный билет от номера в очереди?

 Решение. Опишем математическую модель этого примера. Перенумеруем все билеты, начиная с выигрышного. В результате опыта билеты оказываются распределенными между людьми, которые занимали определенные места в очереди. Этим упорядочивается множество из семи билетов: на первом месте оказывается билет, взятый человеком, стоявшим в очереди первым; на втором месте оказывается билет, взятый человеком, стоявшим в очереди вторым, и т. д. Таким образом, исходом опыта является получение некоторой перестановки из 7 билетов, их число n=7!. Поскольку билеты берутся наугад, то все эти. исходы равновероятны. Нас интересует вероятность события А= «человек, стоявший в очереди на k -м месте, взял выигрышный билет». Этому событию благоприятствуют исходы, при которых получаются перестановки, имеющие на k -м месте выигрышный билет, а остальные 6 мест заняты произвольной перестановкой из оставшихся шести невыигрышных билетов, их число т= 6! Следовательно,

 

 

Видим, что вероятность взять выигрышный билет не зависит от номера очереди.

Задание 4.На пяти одинаковых на ощупь карточках написаны буквы: на двух карточках—буква Л и на трех карточках— буква И. .Выкладываем наугад эти карточки подряд. Какова вероятность того, что выложится слово ЛИЛИИ?

Решение. Опыт в этой задаче состоит в получении наугад некоторого «слова» из имеющихся пяти букв. Нас интересует вероятность события С = «получено слово ЛИЛИИ». Для выявления равновероятных исходов перенумеруем буквы так: Л1, Л2, И1, И2, И3. Теперь в результате опыта мы будем получать слово из нумерованных букв. События «получено слово Л1И1Л2И2И3»и «получено слово Л2И1Л1И3И2» разные, хотя и в том и в другом случае получено слово ЛИЛИИ, т. е. произошло интересующее нас событие С. Выписанные события благоприятствуют событию С. Ясно, что события, выписанные выше, и все возможные аналогичные есть равновероятные исходы нашего опыта. Число их равно числу перестановок в множестве из пяти элементов, т. е. п= 5!=120. Подсчитаем при помощи принципа произведения число исходов, благоприятствующих событию С.

Рассмотрим множество В= {(Л1Л2); (Л2Л1)}, состоящее из двух возможных перестановок нумерованных букв Л, и множество А, состоящее из шести перестановок нумерованных букв И1И2И3. Каждый исход, благоприятствующий событию С, можно получить так: берем элемент множества В и ставим буквы Л (сохраняя их порядок) на первое и третье места в слове. Оставшиеся места занимаем каким-нибудь элементом множества А (не изменяя порядка нумерованных букв И). Таким образом, каждый исход получается как пара: элемент из В и элемент из А. В силу принципа произведения число таких исходов т = 2 • 6 =12. Вероятность же интересующего нас события

5. Итоги урока. Вопросы для повторения:

1) Что такое вероятность, частота события?

2) Сформулируйте классическое определение вероятности?

6. Постановка домашнего задания.

Задание 1. Бросили две игральные кости и сосчитали сумму выпавших очков. Что вероятнее получить в сумме: 7 или 8?

 Решение. В этой задаче опыт состоит в том, что бросают две игральные кости и берут сумму выпавших очков. Исходы этого опыта таковы: «в сумме выпало 2», «в сумме выпало 3» и т. д., «в сумме выпало 12». Но это не равновероятные исходы. Действительно, в сумме может получиться 2 только одним способом: 2 = 1 + 1, а в сумме может получиться 4 двумя способами: 4 = 1 + 3 и 4 = 2 + 2, т. е. шансов на то, что в сумме получится 4, больше. Теперь попробуем уточнить выбор исходов опыта и рассмотрим такие события: «на одной кости выпало kочков, а на другой — р»: k= 1, 2, 3, 4, 5, 6 и р = 1, 2, 3, 4, 5, 6. Но это тоже не равновероятные исходы опыта: интуиция подсказывает, что выпадение одинакового числа очков менее вероятно, чем разного. Чтобы получить равновероятные исходы, внесем в эту задачу некоторый дополнительный элемент, который не меняет вероятностную сторону задачи. Именно, окрасим кости в разные цвета— красный и синий. Но этот элемент позволит нам, наконец, выявить равновероятные исходы рассматриваемого опыта. Это будут следующие события: «на красной кости выпало kочков, а на синей — рочков» = ( k ; p ). Поскольку кости отличаются только цветом, то ясно, что указанные события равновероятны и, кроме того, они образуют множество исходов нашего опыта. Остается подсчитать число всех исходов. Их 36, поскольку каждое из 6 очков, которые могут выпасть на красной кости; может быть в паре с любым из 6 очков, которые могут выпасть на синей. Теперь подсчитаем число исходов, благоприятствующих рассматриваемым событиям. Событию «сумма выпавших очков равна семи» = А благоприятствуют следующие 6 исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2) и (6; 1). Следовательно,

 


Событию «сумма выпавших очков равна 8» = В благоприятствуют следующие 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Следовательно,

 

 

Мы видим, что сумма очков 7 есть более вероятное событие, чем сумма очков 8. Интересно отметить, что этот факт был замечен игроками в кости. Попытки его объяснить (и решение ряда задач по страхованию и т. п.) привели к созданию математической теории — начал теории вероятностей.

Задание 2. В ящике лежат 20 одинаковых на ощупь шаров. Из них 12 белых и 8 черных. Наугад вынимают один шар. Какова вероятность того, что он окажется белым? (Точный смысл выражения «наугад вынимается шар» будет выяснен в процессе решения.)

Решение. В этой задаче рассматривается следующий опыт: из ящика наугад вынимают шар и смотрят его цвет. Сразу напрашивается множество исходов, состоящее из двух событий: Ч= «вынутый шар черный» и Б = «вынутый шар белый». Но эти исходы неравновероятны, так как белых шаров больше и шансов вынуть белый шар больше. Для выявления в этом опыте множества равновероятных исходов внесем в опыт дополнительный элемент, не нарушающий вероятностной структуры задачи, а именно, перенумеруем все шары. Белым шарам поставим в соответствие номера с 1 по 12, а черным — номера с 13 по 20. События «вынут шар с номером k»=АKуже равновероятны, так как шары на ощупь неотличимы и вынимаются наугад. Кроме того, эти 20 событий образуют множество исходов нашего опыта. Следовательно, п = 20, а интересующему нас событию В благоприятствуют первые 12 исходов, т. е. т =12. Следовательно,

 


Точный смысл выражения «наугад вынимается шар» состоит в том, что введенные события Akравновероятны.

 



Урок – семинар

Тема урока: Геометрическая вероятность.

Цель урока:

1) ввести понятие геометрической вероятности;

2) способствовать развитию логического и пространственного воображения учащихся;

3) воспитать самостоятельность, терпение, усидчивость.

Оборудование: доска, мел, чертежи, набор задач.

Структура урока.

1. Организационный момент.

2. Сообщение темы и цели занятия.

3. Изучение нового материала.

1) Учитель. Теория вероятностей, подобно другим математическим наукам, развилась из потребностей практики.

До конца XVII века наука так и не подошла к введению классического определения вероятности, а продолжала оперировать только с числом шансов, благоприятствующих тому или иному событию. В 30 – е годы XVIII столетия классическое понятие вероятности стало общеупотребимым. Так в трактовке Я. Бернулли “ Искусство предположений “ присутствуют обе концепции вероятности – классическая и статистическая, обе они изложены не очень четко, но существенно то, что они уже введены в рассмотрения и использования.

Однако уже в первой половине XVIII века выяснилось, что классическое понятие вероятности имеет ограниченную область применения и возникают ситуации, когда оно не действует, а потому необходимо его расширение. Таким толчком послужили работы французского естествоиспытателя Ж. Бюффона (1707 – 1788), в которой он сформулировал знаменитую задачу о бросании иглы на разграфленную плоскость и предложил ее решение.

Классического определения вероятности нельзя применить к опыту с бесконечным числом «равновероятных» исходов. К описанию такой ситуации приспособлено геометрическое определение вероятности. Т. о. геометрические вероятности—вероятности попадания точки в область (отрезок, часть плоскости и т. д.).

Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством

 

Р== Длина l/Длина L. (5)

 

Для иллюстрации схемы геометрических вероятностей рассмотрим следующие задачи.

2) Ученик. Парадокс Бертрана. Наудачу берется хорда в круге. Чему равна вероятность, что ее длина превосходит длину стороны вписанного равностороннего треугольника?

Решение 1. По соображениям симметрии можно заранее задать направление хорды. Проведем диаметр, перпендикулярный к этому направлению. Очевидно, что только хорды, пересекающие диаметр в промежутке от четверти до трех четвертей его длины, будут превосходит стороны правильного треугольника. Таким образом, искомая вероятность равна

Решение 2.По соображениям симметрии можно заранее закрепить один из концов хорды на окружности. Касательная к окружности в этой точке и две стороны правильного треугольника с вершиной в этой точке образуют три угла по 600. Условию задачи благоприятствуют только хорды, попадающие в средний угол. Таким образом, при этом способе вычисления искомая вероятность оказывается равной

Решение 3.Чтобы определить положение хорды, достаточно задать ее середину. Чтобы хорда удовлетворяла условию задачи, необходимо, чтобы ее середина находилась внутри круга, концентрического данному, но половинного радиуса. Площадь этого круга равна одной четверти площади данного; таким образом, искомая вероятность равна

Причина неоднозначности решения нашей задачи заключается в том, что за решение одной и той же задачи, пользуясь тем, что в условии задачи не определенно понятие проведения хорды на удачу, выдаются решения трех различных задач.

В самом деле, в первом решении вдоль одного из диаметров заставляют катится круглый цилиндрический стержень (рис. 7, а) . Множество всех возможных мест остановки этого стержня есть множество точек отрезка AB длины, равной диаметру. Равновероятными считаются события, состоящие в том, что остановка произойдет в интервале длины h, где бы внутри диаметра ни был расположен этот отрезок.

Во втором решении стержень, закрепленный на шарнире, расположенном в одной из точек окружности, заставляют совершать колебания размером не более 1800 (рис. 7, б). При этом предполагается, что остановка стержня внутри дуги окружности длины h зависит только от длины дуги, но не от ее положения. Таким образом, равновероятным событиям считаются остановки стержня в любых дугах окружности одинаковой длины. Несогласованность определений вероятности в первом и во втором решениях становится совершенно очевидным после такого простого расчета. Вероятность того, что стержень остановится в промежутке от A до x, согласно первому решению равна  Вероятность того, что проекция точки пересечения стержня с окружностью во втором решении попадет в тот же интервал, как показывают элементарно – геометрические подсчеты, равна

 

 при

и

 при

 

а) б) в)

Рис. 7.

 

Наконец, в третьем решении мы бросаем на удачу точку внутрь круга и спрашиваем себя о вероятности попадания внутрь некоторого меньшего концентрического круга (рис. 7, в).

Различие постановок задач во всех трех случаях совершенно очевидно.

3) Ученик.Задача Бюффона. Плоскость расчерчена параллельными прямыми, расстояние между которыми равно 2а. На плоскость наудачу брошена игла длины 2l (l< а). Найти вероятность того, что игла пересечет какую-нибудь прямую.

Решение. Обозначим через x расстояние от центра до ближайшей параллели и через –  угол, составленный иглой с этой параллелью. Величины x и  полностью определяют положение иглы. Всевозможные положения иглы определяются точками прямоугольника со сторонами a и . Из рис. 8 видно, что для пересечения иглы с параллелью необходимо и достаточно, чтобы

 

 

Искомая вероятность в силу сделанных предположений равна отношению площади заштрихованной на рис. 9 области к площади прямоугольника

 

 

Заметим, что задача Бюффона является исходным пунктом для решения некоторых проблем теории стрельбы, учитывающих размеры наряда.

 

Рис. 8. Рис. 9.

 

Полученная формула была использована для опытного определения приближенного значения числа . Таких опытов с бросанием иглы было проведено довольно много. Мы приведем результаты лишь некоторых из них:

 

Экспериментатор  Год Число бросаний иглы Экспериментательное число
Вольф 1850 5000 3,1596
Смит 1855 3204 3, 1553
Фокс 1894 1120 3, 1419
Лаццарини 1901 3408 3, 1415929

 

Так как из полученной нами формулы следует равенство

 

 

то при большом числе бросаний n приближенно

 

 

где m – число происшедших при этом пересечений.

Заметим, что в результате Фокса и Лаццарини заслуживают малого доверия. Действительно, в опыте Лаццарини значение получилось с шестью точными знаками после запятой. Изменение числа пересечений ( числа m ) на единицу меняет по меньшей мере четвертый десятичный знак, если n меньше 5000. В самом деле (  ).

 

 

4) Учитель.В XX веке интерес к геометрической вероятности не ослабел, а вырос, поскольку, помимо чисто математического интереса, они приобрели и серьезное прикладное значение. Схема геометрических вероятностей успешно применяется в астрономии, атомной физике, биологии, кристаллографии.

Современное развитие теории вероятностей характерно всеобщим подъемом интереса к ней и резким расширением круга ее практических применений. За последние десятилетия теория вероятностей превратилась в одну из наиболее быстро развивающихся наук, теснейшим образом связанную с потребностями практики и техники.

 5. Итоги урока. Учитель обобщает изученный материал:

Замечание 1. Приведенные определения для вычисления геометрической вероятности в начале урока (формула (5)) являются частными случаями общего определения геометрической вероятности. Если обозначить меру (длину, площадь, объем) области через mes, то вероятность попадания точки, брошенной наудачу (в указанном выше смысле) в область g—часть области G, равна

Р = mesg/mesG.

Замечание 2. В случае классического определения вероятность достоверного (невозможного) события равна единице (нулю); справедливы и обратные утверждения (например, если вероятность события равна нулю, то событие невозможно). В случае геометрического определения вероятности обратные утверждения не имеют места. Например, вероятность попадания брошенной точки в одну определенную точку области G равна нулю, однако это событие может произойти, и, следовательно, не является невозможным.

 6. Постановка домашнего задания.

 Задание. На плоскости начерчены две концентрические окружности, радиусы которых 5 и 10 см соответственно. Найти вероятность того, что точка, брошенная наудачу в большой круг, попадет в кольцо, образованное построенными окружностями. Предполагается, что вероятность попадания точки в плоскую фигуру пропорциональна площади этой фигуры и не зависит от ее расположения относительно большого круга.

Решение. Площадь кольца (фигуры g) Sg=

Площадь большого круга (фигуры G)

Искомая вероятность Р=

Урок-консультация

Тема урока: Основы теории вероятностей.

Цель урока:

1) способствовать устранению пробелов в знаниях учащихся;

2) обобщить и систематизировать изученный материал;

3) способствовать развитию творческой активности, мышления, памяти.

Оборудование: доска, мел, набор задач.

Структура урока.

Организационный момент.

2. Сообщение темы и цели занятия.

3. Актуализация базовых знаний. Фронтальный опрос.

1. Вся совокупность событий условно может быть разделена на 3 вида (группы) – какие?

а) случайные, которые могут произойти либо не произойти;

б) невозможные, которые заведомо не могут произойти;

в) достоверные, которые заведомо произойдут при выполнении определенного комплекса условий.

2. Что такое вероятность, частота события?

Теоретически ожидаемое постоянное число, около которого группируется (за редким исключением) частоты при массовых испытаниях, называют вероятностью соответствующего исхода (результат наблюдения). Частота – есть эмпирический прообраз вероятности.

3. Сколько подходов (один или несколько) существует для определения вероятности события?

Классический, статистический и геометрический .

4. Дайте классическое определение вероятности?

Вероятность события A определяется формулой P ( A )=

где m — число элементарных исходов, благоприятствующих А;

n — число всех возможных элементарных исходов испытания.

Решение задач.

Задание 1. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад n шаров. Рассмотрим событие С: среди n вынутых шаров окажутся шары ровно m цветов.

Для каждого n от 1 до 9 и каждого m от 1 до 4 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.

 

 Характеристика события С в зависимости от n и m

 Число  расцветок  (m)  Число шаров (n)      1      2      3      4
 1  Д  Н  Н  Н
 2  С  С  Н  Н
 3  С  С  С  Н
 4  Н  С  С  Н
 5  Н  С  С  Н
 6  Н  С  С  Н
 7  Н  Н  Д  Н
 8  Н  Н  Д  Н
 9  Н  Н  Д  Н

Задание 2 . Набирая номер телефона, абонент забыл одну цифру и набрал се наудачу. Найти вероятность того, что набрана нужная цифра.

Решение. Обозначим через А событие—набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

 

Р (A) ==1/10.

Задание 3. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

Решение. Обозначим через В событие—набраны две нужные цифры. Всего можно набрать столько различных цифр, сколько может быть составлено размещений из десяти цифр по две, т. е. . Таким образом, общее число возможных элементарных исходов равно 90. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию В лишь один исход. Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

 

Р(B)=1/90.


Задание 4. На отрезок ОА длины L числовой оси Ох наудачу поставлена точка B (х). Найти вероятность того, что меньший из отрезков ОB и ВА имеет длину, большую L/3. Предполагается, что вероятность попадания точки на отрезок пропорциональна длине отрезка и не зависит от его расположения на числовой оси. Решение. Разобьем отрезок ОА точками С и D на 3 равные части. Требование задачи будет выполнено, если точка В (х) попадет на отрезок CD длины L/3. Искомая вероятность

 

P==(L/3)/L=1/3.

 

Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Это означает выполнение следующих предположений: брошенная точка , может оказаться в любой точке фигуры G, вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g. В этих предположениях вероятность попадания точки в фигуру g определяется равенством

 

Р = Площадь g/ Площадь G.

 

5. Итоги урока. Вопросы для повторения:

1) На какие 3 группы может быть условно разделена вся совокупность событий?

2) Сколько и какие подходы существует для определения вероятности события?

3) Сформулируйте классическое и геометрическое определения вероятности?

 6. Постановка домашнего задания: подготовится к уроку-игре»Восхождение на пик знаний» ( повторить теоретический материал и решение задач по изученной теме).




Урок – игра

Тема урока: Основы теории вероятностей.

Цель урока:

1) повторить изученный материал;

2) расширить кругозор учащихся.

Цель игры:

1) повысить интерес к математике;

2) способствовать развитию внимания, взаимопомощи, чувства товарищества

Оборудование: плакат с указанными маршрутами, набор карточек.

Структура урока.

1.Сообщение темы и цели занятия.

Привал 1

Задание 1 команде. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад n шаров. Рассмотрим событие А: среди вынутых шаров окажутся шары ровно трех цветов. Для каждого n от 1 до 5 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.

Решение.

 

Число вынутых шаров (n) 1 2 3 4 5
Характеристика События А Н Н С С С

 

 

Задание 2 команде. В коробке снова 3 красных, 3 желтых, 3 зеленых шара. Вытаскивают наугад 4 шара. Рассмотрим событие В: среди вынутых шаров окажутся шары ровно m расцветок. Для каждого m от 1 до 4 определите, какое это событие - невозможное, случайное или достоверное, и заполните таблицу.

Решение.

Число расцветок (m) 1 2 3 4  
Характеристика события В Н С С С

Привал 2

Задание 1 команде. При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей утеряна одна деталь, причем неизвестно какая. Наудачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна стандартная деталь.

Решение.

Извлеченная стандартная деталь, очевидно, не могла быть утеряна; могла быть потеряна любая из остальных 30 деталей (21+10-1=30), причем среди них было 20 стандартных (21-1=20). Вероятность того, что была потеряна стандартная деталь,

 

P=

Задание 2 команде. При перевозке ящика, в котором содержались 21 стандартная и 10 нестандартных деталей утеряна одна деталь, причем неизвестно какая. Наудачу извлеченная (после перевозки) из ящика деталь оказалась стандартной. Найти вероятность того, что была утеряна нестандартная деталь.

Решение.

Среди 30 деталей, каждая из которых могла быть утеряна, было 10 нестандартных. Вероятность того, что потеряна нестандартная деталь,

 

P=

Привал 3

Задание 1 команде. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг квадрата. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.

Решение.

Введем обозначения: R- радиус круга, а – сторона вписанного квадрата, А – попадание точки в квадрат, S – площадь круга, S1 – площадь вписанного квадрата. Как известно площадь круга S=pR2. Сторона вписанного квадрата через радиус описанной окружности выражается формулой , поэтому площадь квадрата S1=2R2. Полагая в формуле Sg=S1, SG=S, находим искомую вероятность

 

Задание 2 команде. Внутрь круга радиуса R наудачу брошена точка. Найти вероятность того, что точка окажется внутри вписанного в круг правильный треугольник. Предполагается, что вероятность попадания точки в часть круга пропорциональна площади этой части и не зависит от ее расположения относительно круга.

Решение.

Введем обозначения: R- радиус круга, а – сторона вписанного равностороннего треугольника, А – попадание точки в треугольник, S – площадь круга, S1 – площадь вписанного равностороннего треугольника. Как известно площадь круга S=pR2. Сторона вписанного равностороннего треугольника через радиус описанной окружности выражается формулой , поэтому площадь треугольника S1= . Полагая в формуле Sg=S1, SG=S, находим искомую вероятность

 

4. Итоги урока:

1) объявляется команда победителей;

2) вручаются похвальных грамоты наиболее активным участникам игры;

3) коллективно разбираются нерешенные задачи или предлагаются другие способы решения задач.

 



Заключение

 

В процессе выполнения выпускной квалификационной работы было проведено исследование по совершенствованию методически преподавания школьной стохастики. Исходя из психолого-педагогических и методических особенностей разработан и апробирован факультативный курс «Элементы теории вероятностей» для 10-11 классов общеобразовательной школы, рассчитанный на 6 уроков.

Экспериментальное преподавание проводилось в школе № 43 ст. НоводеревянковскойКаневского района среди учащихся 10 классов, посещавших факультативный курс. Достаточно высокий уровень усвоения знаний учащихся позволяет судить об эффективности факультативных занятий при обучении теории вероятностей в старших классах общеобразовательной школы.

Таким образом в результате выполнения выпускной квалификационной работы поставленная цель достигнута, задачи выполнены.

Перспектива дальнейшего применения материала выпускной квалификационной работы состоит в том, что она может быть использована в качестве дополнительного пособия при ознакомлении с методикой преподавания основ теорией вероятностей в средней школе как студентами и преподавателями вузов, так и учителями общеобразовательных школ при обучении теории вероятностей.

Так как ведущее место среди факторов, определяющих продуктивность дидактического процесса, занимают мотивация учения и интерес к учебному труду, то использование материала приложений (исторической справки, внеклассного мероприятия «По страницам истории») при введении основ теории вероятностей в изучение, поможет учителю не только побудить интерес к теории вероятностей, но и раскроет непосредственную близость теории вероятностей с жизнью, с практикой и другими науками.



Список литературы

1. Абрамова Г.С. Возрастная психология. – М.: Академия, 1999.-235с.

2. Аверьянов Д.И., Алтынов П.И., Баврин И.И. Математика: Большой справочник для школьников и поступающих в вузы. – М.: Дрофа, 1998.-864с.: ил.

3. Антипов И.Н., Виленкин Н.Я., Иващев–Мусатов О.С. Избранные вопросы математики: Факультативный курс 9 класс. – М.: Просвещение,1979.-191с.: ил.

4. Афанасьев В.В. Теория вероятностей в примерах и задачах. – Ярославль: ЯГПУ, 1994.-127с.

5. Баврин И. И., Фрибус Е.А. Старинные задачи. – М.: Просвещение, 1994.

6. Бунимович Е.А., Булычев В.А. Вероятность и статистика для школьников. – М.: Дрофа,2001.-204с.

7. Бунимович Е.А. Вероятностно-статистическая линия в базовом школьном курсе математики.- //Математика в школе.-2002.- № 4.-с.52 –58.

8. Буренок И.И., Туйбаева Л.И., Цедринский А.Д. Психолого-педагогические и методические аспекты урока математики. – Славянск – на – Кубани, 2000.- 72с.

9. Бычкова Л.О., Селютин В.Д. Об изучении вероятностей и статистики в школе. - //Математика в школе. –1991.-№6.-с. 9-12.

10. Гнеденко Б.В. Курс теории вероятностей. – М.: Наука, 1965.-453с.: ил.

11. Гнеденко Б.В. Статистическое мышление и школьное математическое образование. - //Математика в школе.- 1999.-№ 6.-с.2 – 6.

12. Гмурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 2000.-479с.: ил.

13. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М.: Высшая школа, 2001.-400с.: ил.

14. Министерство образования РФ. Программы для общеобразовательных школ, гимназий, лицеев:Математика 5-11 классов. – М.: Дрофа, 2002.

15. Мотикас В.С. Школьнику о теории вероятностей: Учебное пособие по факультативному курсу для учащихся 8-10 класса. – М.: Просвещение, 1976.-104с.

16. Подласый И.П. Педагогика: Книга 1. – М.: Владос, 2000.-576с.

17. Подласый И.П. Педагогика: Книга 2. – М.: Владос, 2000.-256с.

18. Рослова Л.О. О новых книгах издательства «Дрофа». - //Математика.-1999.- № 21.- с. 38-40.

19. Соловейчик И.Л. Я иду на урок математики: 6 класс. – М.: Первое сентября, 2001.-320с.: ил.

20. Степашев В.Д. Активизация внеурочной работы по математике в средней школе. – М.: Просвещение, 1991.-97с.

21. Столяренко Л.Д. Основы психологии. – Ростов-на-Дону: Феникс, 1999.-672с.

22. Тарасов Л.В. Мир, построенный на вероятности: книга для учащихся. – М.: Просвещение, 1984.-153с.

23. Токмазов Г.В. Укрупнение дидактических единиц в задачах по теории вероятностей. - //Математика в школе.-1999.- № 4.- с.81 – 84.

24. Федосеев В.Н. Элементы теории вероятностей для VII – VIII классов средней школы. - //Математика в школе. -2002.- № 4.-с.58 – 64.

25. Федосеев В.Н. Элементы теории вероятностей для IX классов средней школы. - //Математика в школе.-2002.- № 5.- с.34 – 40.

 



Приложение 1

Внеклассное мероприятие по математике для старших классов на тему: «По страницам истории»

Тема: По страницам истории.

Девизы урока:

О, сколько нам открытий чудных…

Пушкин А.С.

Три пути ведут к знанию:

Путь размышления – самый благородный,

Путь подражания – самый легкий

И путь опыта – это путь самый горький…

Конфуций

Цель урока:

1) Развить творческую активность;

2) показать нестандартные способы решения задач по теории вероятностей;

3) побудить интерес к теории вероятностей, математике.

Учитель объявляет тему урока, зачитывает девизы, подчеркнув лаконичность, целенаправленность, точность народной мудрости и соответствие выбранных изречений задачам урока.

Обращает внимание учеников на то, что математика много дает для умственного развития человека – заставляет думать, соображать, искать простые и красивые решения, помогает развивать логическое мышление, умение правильно и последовательно рассуждать, тренирует память, внимание, формирует многие учебные навыки и умения, закаляет характер. Учитель знакомит учащихся со старинными задачами науки о случайном – показывает связь прошлого с современностью.

Учитель : Еще в глубокой древности появились различные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы (то есть бросание костей из конечностей животных) и игральные кости (кубики с нанесенными на гранях точками). В настоящее время игральные кости иногда изготовляют в виде додекаэдров и икосаэдров. В одной из азартных (слово «азартный» происходит от арабского «азарт» - трудный, то есть редко выпадающие комбинации костей) игр бросали одновременно четыре астрагала и фиксировался результат.

Худший бросок, при котором выпадает более одной единицы, назывался «собакой». Лучшим броском считался бросок «Венера», когда на четырех астрагалах выпадали различные грани. Позднее азартные игры распространились в Средневековой Европе.

В частности, в XIV веке появились игральные карты. В XVII веке азартные игры способствовали зарождению и становлению комбинаторики и науки о случайном (теории вероятностей). Ученые XV-XVII веков много внимания уделяли решению задач о дележе ставки, об игре в кости, лотереях и т. п.

Задачи о дележе ставки.

До середины XVII не было правильных задач о справедливом разделении ставки. В 1654 году между французским математиком Блезом Паскалем и Пьером Ферма возникла переписка по поводу ряда задач. Из переписки Паскаля и Ферма сохранилось лишь 3 письма Паскаля и 4 письма Ферма.

Эти письма впервые были опубликованы в Тулузе. В этой переписки оба ученых, хотя и несколько разными путями, приходят к верному решению, деля ставку пропорционально вероятности выиграть всю ставку, если игра будет продолжена.

Совпадение результатов великих ученых при решении задач о дележе ставки послужило для Паскаля поводом шутливо заметить в первом письме к Ферма от 29 июля 1654 года: «Как я вижу, истина одна:и Тулузе, и в Париже ». Ферма со своей стороны нашел решение и для более сложного случая, когда игра происходит между произвольным числом игроков.

Задачи Блеза Паскаля. Как разделить ставку при игре трех выигрышных партий, если один игрок выиграл две партии, а другой – одну и каждым вложено в игру по 32 пистоля ?

Решение.

Свое решение задачи Паскаль наиболее полно изложил в письме к Ферма от 29 июля 1654 года: « Вот примерно, что я делаю для определения стоимости каждой партии, когда два игрока играют, например, на три партии и каждым вложено в игру по 32 пистоля.

Предположим, что один выиграл две партии, а другой – одну. Они играют еще одну партию, если ее выигрывает первый, то он получает всю сумму в 64 пистоля…; если же эту партию выигрывает второй, то каждый игрок будет иметь две выигранные партии, и, следовательно, если они намерены произвести раздел, каждый должен получить обратно свой вклад в 32 пистоля.

Примите же во внимание, монсеньер, что если первый выиграет, то ему причитается 64; если он проиграет, то ему причитается 32. Если же игроки не намерены рисковать… и хотят произвести раздел, то первый должен сказать : «Я имею 32 пистоля верных, ибо в случае проигрыша я их также получил бы, но остальные 32 пистоля могут быть получены либо мной, либо Вами. Случайности равны. Разделим же эти 32 пистоля пополам, и дайте мне , кроме того, бесспорную сумму в 32 пистоля». Как видно из рассуждений Паскаля, первый игрок должен получить 48 пистолей, а второй - 16».

Как разделить ставку при игре трех выигрышных партий, если один игрок выиграл две партии, а другой – ни одной и каждым вложено в игру по 32 пистоля ?

Решение.

Ответы, предложенные паскалем, таковы: первый игрок должен получить 56 пистолей, а второй – 8. рассуждения при решении подобны тем, которые были проведены при решении предыдущей задачи: если бы первый игрок выиграл еще одну партию, то ему причиталось бы 64 пистоля, если бы проиграл – 48 пистоля, а остаток 16 делится поровну.

Как разделить ставку при игре трех выигрышных партий, если первый игрок выиграл одну партию, а второй- ни одной и каждым вложено в игру по 32 пистоля ?

Решение.

Пусть игроки сыграют еще одну партию. Если ее выиграет первый, то он будет иметь , как и в предыдущем случае, 56 пистолей. Если он ее проиграет, то у обоих окажется по одной выигрышной партии и первому следует получить 32 пистоля. Первый игрок может сказать: «Если вы не хотите играть эту партию, дайте мне мой бесспорный выигрыш в 32 пистоля, а остаток от 56 пистоля разделим поровну…то есть возьмем каждый по 12 пистолей, что с 32 пистолей составит 44 пистоля». Значит, первый игрок должен получить 44 пистоля, а второй – 20 пистолей.

Для случая, когда первый игрок выиграл одну партию, а второй – ни одной, Паскаль приводит формулу W=A+A*(1*3*5*...*(2n-1))/(2*4*6*...2n), где А – ставка каждого игрока, а W – ожидание выигрыша первого игрока.

Как видно, во всех случаях Паскаль делит ставку пропорционально вероятности выигрыша при продолжении игры. Оригинальный метод Паскаля трудно применить к более сложным случаям.

Задачи Пьеро Ферма. Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В – трех. Как справедливо разделить ставку, если игра прервана?

Решение. Письмо Ферма , в котором он излагает свой метод решения, не сохранилось, но его можно восстановить из ответного письма Паскаля от 24 августа 1654 года. Рассуждение Ферма сводится к следующему. Игра может быть продолжена максимум еще 4 партии. Для перебора всех возможных случаев Ферма составляет таблицу, где выигрыши партий игроками А и В обозначены соответственно буквами а и в. Из 16 возможных исходов первые 11 благоприятны для выигрыша игроком А всей встречи, а остальные 5 исходов благоприятны для игрока В. следовательно, 11/16 ставки должен получить игрок А, а игрок В – 5/16. Как видно, Ферма предлагает разделить ставку пропорционально вероятностям выигрыша всей встречи.

 Паскаль решает эту задачу на основе изучения свойств арифметического треугольника, приведенного в его «Трактате об арифметическом треугольнике», опубликованном посмертно в Париже в 1665 году. Он складывает количество партий, недостающих игрокам А (2) и В (3) берет ту строку треугольника (рис. 1), в котором количество членов равно найденной сумме, то есть пятую.

 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Рис. 1.

 

Тогда доля игрока А будет равна сумме членов найденной строки, начиная от единицы, причем количество слагаемых равно числу партий, недостающих игроку В (3), а доля игрока В равна такой же сумме, но с количеством слагаемых, равном числу партий, недостающих игроку А (2). Выписываем строку, в котором находятся пять чисел. Это будет 1, 4, 6, 4, 1. следовательно, ставку нужно разделить в отношении 11:5. при таком решении ставка делится пропорционально вероятностям выиграть всю ставку для игроков А и В.

То есть, правило Паскаля состоит в следующем : пусть игроку А до выигрыша всей игры не хватает m партий , а игроку В – n партий, тогда ставка должна делиться между игроками в отношении .

Пусть до выигрыша всей встречи игроку А недостает одного очка, а двум другим (В и С) недостает по два очка. Как справедливо разделить ставки?

Решение. Перебор всех возможных случаев можно представить таблицей.

При рассмотрении такой таблицы Паскаль допустил неточность в рассуждениях, считая, что из 27 возможных исходов бесспорно благоприятствуют игроку А лишь 13, а исходы пятого, одиннадцатого, девятнадцатого столбцов благоприятствуют сразу и игроку А и игроку В (аналогичные исходы девятого, пятнадцатого, двадцать четвертого столбцов благоприятствуют игроку А и игроку С). Поэтому доли игроков в этих случаях следует брать с половинным весом. В результате Паскаль ошибочно предлагал делить ставку в отношении 16:  вместо 17:5:5.

Задачи о гаданиях.

По преданию, когда – то в сельских местностях России среди девушек существовало гадание. Одна из подруг зажимала в руке шесть травинок так, чтобы концы травинок торчали сверху и снизу, а другая связывала эти травинки попарно между собой сверху и снизу. Если при этом все шесть травинок оказывались связанными в одно кольцо, то это должно было означать, что девушка в текущем году выйдет замуж.

Задача (для самостоятельного решения).

Какова вероятность того, что травинки при завязывании наудачу образуют кольцо?

Ответ. 8/15.

 



Приложение 2

Введение

Глава I. Вероятностно - статистическая линия в базовом школьном курсе математики

1.1 Статистическое мышление и школьное математическое образование

1.2 Психолого-педагогические аспекты изучения теории вероятностей в средней школе

1.3 Тематическое планирование к учебникам Федерального комплекта

Глава II. Методические рекомендации преподавания основ теории вероятностей в средней школе

2.1 Вероятность случайных событий

2.2 Дискретность пространств элементарных событий

2.3 Классическое и статистическое определение вероятности

2.4 Алгебра событий

Глава III. Факультативный курс «Элементы теории вероятностей» для 10 – 11 классов

3.1 Внеклассная работа по математике, факультативные занятия 2. Случайные события. Урок – лекция

3.2 Классическое определение вероятности. Уроки-практикумы

3.2.1 Лабораторная работа

3.2.2 Практическая работа

3.3 Геометрическая вероятность. Урок – семинар

3.4 Основы теории вероятностей. Урок – консультация

3.5 Урок – игра «Восхождение на пик знаний»      

Заключение

Список литературы

Приложение

 



Введение

До недавнего времени Россия оставалась одной из немногих стран с развитой системой образования, где вероятностно-статистические знания практически всегда оставались за пределами школьного обучения. С наступлением 21 века мы окончательно убедились в неотвратимости пришествия в среднюю школу стохастики, изучающей случайные явления.

Идея введения в школьную математику элементов теории вероятностей и статистики является привлекательной для наших педагогов. С другой стороны, большинство из них слабо представляют содержательно-методические основы обучения стохастики в школе, по этой причине многие с настороженностью и недоверием относятся к данному нововведению.

Поэтому в настоящее время одной из наиболее актуальных проблем методики преподавания математики является проблема введения в школьный курс вероятностно – статистической линии, которая давала бы возможность познакомить всех учащихся с миром случайного, с самых ранних лет формировать у них умение накапливать систематизировать представления о свойствах окружающих явлений, в большинстве своем имеющих стохастическую природу.

 К особенностям новой линии можно отнести то, что в ней много эмпирики и рассуждений, мало формул, отсутствуют громоздкие вычисления, открыт большой простор для творческой деятельности учащихся.

Эта линия требует своеобразных форм, средств и приемов обучения, соответствующих возрасту и интересам учащихся: дидактических игр и экспериментов, живых наблюдений и предметной деятельности.

Изучение вероятностно – статистического материала должно быть направлено на развитие личности школьника, расширять возможности его общения с современными источниками информации, совершенствовать коммуникативные способности и умения ориентироваться в общественных процессах, анализировать ситуации и принимать обоснованные решения, обогащать систему взглядов на мир осознанными представлениями о закономерностях в массе случайных фактов.

Сегодня мы имеем первый комплект учебников для массовой школы, содержащие разделы по теории вероятностей. В связи с этим многие учителя оказались в нелегком положении. Большинство из них не помнит даже самих «элементов», не говоря уже о какой – то специальной методике их преподавания в школе, направленной на развитие особого типа мышления и формирования недетерминированных представлений.

 Поэтому остро встает проблема методической готовности учителей, способных к успешной реализации вероятностно-статистической линии в школьном курсе математики.

Объектом исследования является процесс обучения элементам теории вероятностей на факультативных занятиях в средней школе.

В качестве предмета исследования выступает методика преподавания основ теории вероятностей в общеобразовательной школе.

Цель исследования – теоретически обосновать и содержательно представить факультативной курс «Элементы теории вероятностей» для 10-11 классов средней школы.

Исходя из цели исследования, были поставлены следующие задачи исследования:

1) проанализировать современные тенденции в исследованиях, посвященных вопросам введения в школьную математику элементов теории вероятностей и математической статистики;

2) представить практический материал – решение задач по данной теме, с выработанными методическими указаниями и рекомендациями;

3) разработать структуру, содержание и методику проведения факультативного курса «Элементы теории вероятностей» в старших классах средней школы;

4) провести апробацию.

В ходе решения поставленных задач использовались следующие методы исследования:

1) изучение и анализ учебно–методической и психолого-педагогической литературы по проблеме исследования;

2) теоретический анализ проблемы, определение основных положений исследования;

3) обобщение и анализ теоретико-методического материала;

4) решение задач по данной теме;

5) экспериментальное преподавание (апробация) направленное на выявление эффективности предлагаемой методики проведения факультативного курса «Элементы теории вероятностей» для 10-11 классов общеобразовательной школы.

 



Глава I . Вероятностно - статистическая линия в базовом школьном курсе математики

 

1.1 Статистическое мышление и школьное математическое образование

Каждая эпоха предъявляет свои требования к математической науке и математическому образованию. В настоящее время все более громкими становятся голоса методистов, которые ратуют за усиление вероятностно – статистической линии в школьном курсе математики, начиная с младших классов средней школы. Но многие учителя математики уже долгое время не сталкивались с вопросами комбинаторики, теории вероятностей, статистики, т. е. со всем тем, что входит в вероятностно – статистическое направление математики. Они нуждаются в расширении своих знаний по углубленным вопросам. Самым авторитарным исследователем в нашей стране в области теории вероятности и математической статистики был Борис Владимирович Гнеденко (1912-1995). Он был автором многих статей в журнале «Математика в школе».

Чему и как учить в школе, по-видимому, всегда будет принадлежать к числу вечных проблем, которые постоянно возникают даже после того, как им дано решение, лучшее по сравнению с предыдущим. И это неизбежно, потому что постоянно пополняются наши научные знания и подходы к объяснению окружающих нас явлений. Несомненно, что содержание школьного преподавания должно изменяться с прогрессом науки, несколько отставая от него и давая возможность новым научным идеям и концепциям принять приемлемые в психологическом и методическом отношении формы.

Однако считать, что содержание и характер школьного курса той или иной науки должны полностью определяться состоянием соответствующей научной отрасли знания и господствующими в ней представлениями о центральных ее понятиях, было бы грубейшей ошибкой. Подавляющее большинство школьников не станут специалистами в данной области науки. Из них выйдут как представители иных научных интересов и практических областей деятельности, так и представители свободных профессий - писатели, артисты, художники. Именно поэтому для всех учащихся необходимо получить в школе сведения об установившихся научных концепциях и приобрести твердые основы научных знаний, а кроме того умения логически рассуждать и ясно излагать свои мысли. Школа должна дать представления о том, что наука и ее концепция тесно связаны с практикой, из которой она черпает постановки своих проблем, идеи, а затем возвращает практике новые возможности решения основных ее проблем, создает для нее новые методы. Без этого образование будет неполноценным, оторванным от жизни и создаст для воспитанников школы многочисленные трудности. Вот почему на содержание школьного образования должны оказывать широко понятые требования практики наших дней и обозримого будущего.

В нашу жизнь властно вошли выборы и референдумы, банковские кредиты и страховые полисы, таблицы занятости и диаграммы социологических опросов. Общество все глубже начинает изучать себя и стремиться сделать прогнозы о самом себе и о явлениях природы, которые требуют представлений о вероятности. Даже сводки погоды в газетах сообщают о том, что "завтра ожидается дождь с вероятностью 40%".

Полноценное существование гражданина в сложном, вариативном и многоукладном обществе непосредственно связано с правом на получение информации, с ее доступностью и достоверностью, с правом на осознанный выбор, который невозможно осуществить без умения делать выборы и прогнозы на основе анализа и обработки зачастую неполной и противоречивой информации.

Мы должны научить детей жить в вероятностной ситуации. А это значит извлекать, анализировать и обрабатывать информацию, принимать обоснованные решения в разнообразных ситуациях со случайными исходами. Ориентация на демократические принципы мышления, на многовариантность возможного развития реальных ситуаций и событий, на формирование личности, способность жить и работать в сложном, постоянно меняющемся мире, с неизбежностью требует развития вероятностно – статистического мышления у подрастающего поколения. Эта задача может быть решена в школьном курсе математики на базе комплекса вопросов, связанных с описательной статистикой и элементами математической статистики, с формированием комбинаторного и вероятностного мышления [12]. Однако не только социально – экономическая ситуация диктует необходимость формирования у нового поколения вероятностного мышления. Вероятностные законы универсальны. Они стали основой описания научной картины мира. Современная физика, химия, биология, демография, социология, лингвистика, философия, весь комплекс социально – экономических наук построены и развиваются на вероятностно – статистической базе. Подросток не отделен от этого мира глухой стеной, да и в своей жизни он постоянно сталкивается с вероятностными ситуациями. Игра и азарт составляют существенную часть жизни ребенка. Круг вопросов, связанных с соотношениями понятий "вероятность" и "достоверность", проблема выбора наилучшего из нескольких вариантов решения, оценка степени риска и шансов на успех, представление о справедливости и несправедливости в играх и в реальных жизненных коллизиях – все это, несомненно, находится в сфере реальных интересов подростка. Подготовку к решению таких проблем и должен взять на себя курс школьной математики.

Сегодня в науке фундаментальное значение приобрело понятие случайного и уверенно пробивает себе дорогу отыскания оптимальных решений. Особенно назрела необходимость введения в школьное преподавание концепции случайного, и это вызывается не только требованиями научного и практического порядка, но и чисто методическими соображениями [11]. В то же время классическая система российского образования основана, прежде всего, на отчетливо детерминистских принципах и подходах и в математике, и в других предметах. Если не снять, то хотя бы ослабить противоречие между формируемой в стенах школы детерминистской картиной мира и современными научными представлениями, базирующимися на вероятностно – статистических законах, невозможно без введения основ статистики и теории вероятностей в обязательное школьное образование. Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности ребенка, его интересов и склонностей. Этим определяются критерии отбора содержания, разработка и внедрение новых, интерактивных методик преподавания, изменения в требованиях к математической подготовке ученика. Одновременно само знакомство школьников с очень своеобразной областью математики, где между черным и белым существует целый спектр цветов и оттенков, возможностей и вариантов, а между однозначным "да" и "нет" существует еще и "быть может" (причем это "быть может" поддается строгой количественной оценке!), способствует устранению укоренившегося ощущения, что происходящее на уроке математики никак не связано с окружающим миром, с повседневной жизнью.

Согласно данным ученых-физиологов и психологов, а также по многочисленным наблюдениям учителей математики падение интереса к процессу обучения в целом и к математике в частности. На уроках математики в основной школе, в пятых-девятых классах, проводимых по привычной схеме и на традиционном материале, у ученика зачастую возникает ощущение непроницаемой стены между излагаемым абстрактно-формальными объектами и окружающим миром. Именно вероятностно-статистическая линия, или, как ее стали называть в последнее время, - стохастическая линия, изучение которой невозможно без опоры на процессы, наблюдаемые в окружающем мире, на реальный жизненный опыт ребенка, способна содействовать возвращению интереса к самому предмету "математика", пропаганде его значимости и универсальности. Наконец, концепция открытого общества, процессы европейской и мировой интеграции неразрывно связанны с взаимным сближением стран и народов, в том числе и в сфере образования. Россия, имея одну из самых мощных и признанных в мире традиций школьного математического образования, одновременно остается едва ли ни единственной развитой страной, где в основном школьном курсе математики нет основ статистики и теории вероятностей [7]. Наметившиеся в нашей стране тенденции экономических преобразований позволяют предположить, что в самом недалеком будущем обществом будут востребованы организаторы и участники производства нового типа, которыми должны будут стать многие выпускники школ. Столь необходимую для их деятельности стохастическую культуру надо воспитывать с ранних лет. Не случайно в развитых странах этому уделяется большое внимание: с элементами теории вероятностей и статистики учащиеся знакомятся уже с первых школьных лет и на протяжении всего обучения усваивают вероятностно – статистические подходы к анализу распространенных ситуаций, встречающихся в повседневной жизни.

Число примеров подходов к изучению вероятностно – статистического материала в средней школе можно было бы привести много, поскольку за последние два десятилетия практически каждая страна ввела этот материал в школьную программу и предложила один или несколько подходов к его изучению. Интересные работы появились в Польше, Швеции, Израиле, Франции. Проблемы, связанные с созданием системы изучения вероятностно – статистического материала в средней школе, в нашей стране освещается недостаточно. Анализ известных нам подходов к изучению элементов теории вероятностей и статистики в средних школах различных стран позволяет сделать следующие выводы:

- в подавляющем большинстве стран этот материал начинает изучаться в начальной школе;

- на протяжении всех лет обучения учащиеся знакомятся с вероятностно – статистическими подходами к анализу эмпирических данных, причем большую роль при этом играют задачи прикладного характера, анализ реальных ситуаций;

- в процессе обучения большая роль отводится задачам, требующим от учащихся работы в маленьких группах, самостоятельного сбора данных, обобщение результатов работы групп, проведение самостоятельных исследований, работ практического характера, постановки экспериментов, проведение небольших лабораторных работ, подготовки долгосрочных курсовых заданий – все это диктуется своеобразием вероятностно – статистического материала, его тесной связью с практической деятельностью;

- изучение стохастики как бы распадается на вероятностную и статистическую составляющие, тесно связанные между собой, во многих странах они дополнены небольшим фрагментом комбинаторики.

В нашей стране уже предпринимались неудачные попытки введения в школьный курс математики понятие вероятности события. В силу изолированности и инородности его по отношению к традиционному школьному курсу этот материал был вскоре изъят из программ и учебников.

Некоторый опыт обучения элементам теории вероятностей накоплен в школах с углубленным изучением математики, но и он лишь подтверждает тот факт, что попытки решить проблему путем введения в традиционный курс математики нового изолированного раздела обречен на провал. Изучение элементов теории вероятностей как замкнутого раздела программы, относящегося к «чистой», теоретической математике, полностью дискредитировало себя в глазах педагогов и привело к тому, что некоторые из них вообще выражают сомнения в том, что ее можно и нужно изучать в средней школе. В тоже время преподаватели физики, химии, биологии ощущают острую потребность в том, чтобы выразить основные закономерности этих наук на языке вероятностных понятий. Ведь современное состояние человеческих знаний о мире позволяет считать, что случайный характер присущ основным (базисным) явлениям микромира [9].

Появление в школьной программе вероятностно – статистической линии, ориентированной на знакомство учащихся с вероятностной природой большинства явлений окружающей действительности, будет способствовать усилению ее общекультурного потенциала, возникновению новых, глубоко обоснованных межпредметных связей, гуманитаризации школьного математического образования.

При отборе материала для новой лини школьного курса необходимо учитывать общеобразовательную значимость и мировоззренческий потенциал предлагаемых тем. Важно правильно оценить то, какие знания нужны современному человеку в повседневной жизни и деятельности, что из них потребуется ученику для изучения других школьных предметов, для продолжения образования, какой вклад могут внести эти знания в формирование различных сторон интеллекта ученика. Необходимо позаботиться так же о том, чтобы предложенное содержание обеспечивало возможности органичного сопряжения нового учебного материала с традиционным, способствовало развитию внутрипредметных связей.

И в нашей стране сегодня проходит неизбежный процесс вхождения стохастики как равноправной составляющий в обязательное школьное математическое образование.

Все государственные образовательные документы последних лет содержат вероятностно-статистическую линию в курсе математики основной школы наравне с такими привычными линиями, как "Числа", "Функции", "Уравнения и неравенства", "Геометрические фигуры" и т.д.

 

Дата: 2019-12-22, просмотров: 396.