ТЕНДЕНЦИИ РАЗВИТИЯ НАКОПИТЕЛЕЙ ИНФОРМАЦИИ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Следует отметить, что разработки в области автономных устройств для переноса информации начались довольно давно.

Первая энергонезависимая полупроводниковая память называлась ROM, т.е. название подсказывает, что произвести запись здесь можно было только один раз. Поэтому ROM использовалась лишь для хранения информации. Частично эту проблему удалось решить при создании PROM. Микросхему можно было подвергнуть повторному (но пока только единственному) «прожигу» с помощью специального устройства и тем самым полностью перезаписать информацию на ней.

Следующим шагом стало создание компанией Intel микросхемы EPROM на базе МОП-транзистора (металл – оксид – полупроводник). Появилась долгожданная возможность неоднократной перезаписи информации, хранящейся на всей микросхеме, после стирания содержимого рентгеновскими лучами. Впоследствии также выпущены схемы, где обнуление осуществлялось с помощью ультрафиолетовых лучей через специальное окошко на микросхеме.

В 1979 г. компания Intel разработала новый вид памяти – EEPROM, в котором появилась возможность перезаписывать не всю информацию на микросхеме, а ее часть. Данные в определенных ячейках изменялись под влиянием электрического тока.

И вот наконец пришел черед флэш-памяти. Разработанная компанией Toshiba микросхема получила название NAND от применяемой логической схемы NOT AND («НЕ-И»). Позже, в 1988 г., компания Intel выпустила свой вариант флэш-памяти NOR (NOT OR, «НЕ-ИЛИ»). Хотя с тех пор прошло уже без малого 20 лет, эти два типа микросхем и сейчас составляют львиную долю оборота рынка флэш-памяти.

Корпорация Hitachi разработала архитектуру флэш-памяти, названную AND, которая комбинирует свойства NOR и NAND. Эти микросхемы обладают повышенной износостойкостью за счет применения алгоритмов равномерного использования всех ячеек при работе. Операции записи и стирания информации производятся методом туннелирования.

Компания Mitsubishi создала собственную флэш-память, носящую название DiNOR, в которой запись и стирание информации происходит также методом туннелирования. Эта память более долговечная, поскольку использует особый метод стирания данных, предохраняющий ячейки от пережигания[5].

Рынок внешних накопителей информации в последнее время развивался в основном за счет портативных устройств на флэш-памяти. Однако их объем до сих пор не позволяет применять их там, где необходимо сохранять и транспортировать большие массивы информации. В таких случаях на помощь приходят накопители, построенные на базе жестких портативных дисков. Популярность последних постоянно растет, их используют не только в ноутбуках и КПК, но даже в смартфонах и мобильных телефонах. Большинство крупных компаний давно уже наладили выпуск жестких портативных дисков размером от 0,85 до 2,5 дюйма, которые могут служить и как внешние накопители информации. Компания Western Digital выпустила на рынок два таких устройства, каждое из которых обладает своими интересными особенностями.

WD Passport Pocket. Внешний накопитель WD Passport Pocket благодаря небольшим размерам 61*45*9,5 мм может вполне сойти за крупную «флэшку». Он построен на базе жесткого диска и располагает внушительным объемом памяти в 6 Гбайт. При этом масса WD

Passport Pocket составляет 80 г, что, учитывая его размеры, позволяет без труда уместить накопитель даже в кармане рубашки.

На верхнем торце расположен убирающийся внутрь корпуса складной разъем для подключения к ПК. В результате в сложенном виде разъем защищен от внешнего воздействия и механических повреждений. Благодаря значительному объему памяти устройство можно использовать для хранения и транспортировки данных, а если установить на него операционную систему, то и в качестве системного диска.

WD Passport Pocket передает данные по протоколу USB 2.0, что позволяет обмениваться большими объемами информации с высокой скоростью. В среднем скорость записи на устройство равняется 3,5 Мбайт/с. Накопитель полностью совместим с компьютерами PC и Macintosh. При подключении WD Passport Pocket к ПК он автоматически опознается операционной системой и не требует дополнительных драйверов.

Легкость в работе, небольшие размеры и солидный объем памяти позволяют применять WD Passport Pocket как для работы, так и для развлечений. Устройство подойдет и профессионалам вне зависимости от сферы их деятельности, и простым пользователям ПК.

WD Passport 120 Гбайт. Второй внешний накопитель серии WD Passport существенно отличается от коллеги. Выглядит он как небольшая пластмассовая коробочка, верхняя часть которой изготовлена из серебристого пластика, и нижняя – из прорезиненного материала. В качестве носителя информации здесь используется 2,5-дюймовый жесткий диск, помещенный в прочный амортизирующий и теплорассеивающий корпус, защищающий от перегрева и ударных нагрузок при падении. Применение защитного корпуса существенно отразилось на размерах изделия (144*89*21 мм), носить в кармане такой «кирпич» довольно проблематично. Однако, учитывая внушительный объем жесткого диска в 120 Гбайт, а также наличие защитного корпуса, предохраняющего его от динамических нагрузок, не думаю, что стоит относить размеры аппарата к недостаткам. На правом торце накопителя расположены разъем mini-USB для соединения с ПК и еще один – для подключения внешнего питания, который задействуется при подсоединении к портам USB 1.1. Порты во избежание выхода из строя прикрыты резиновой заглушкой.

В модели WD Passport используется жесткий диск с частотой вращения 5400 об/мин.

Передача данных осуществляется посредством протокола USB 2.0 – средняя скорость записи на устройство составляет 10 Мбайт/с.

Как уже отмечалось, WD Passport обладает защитным корпусом, предохраняющим жесткий диск при падении. По заявлению производителя, устройство способно выдержать падение с небольшой высоты без каких-либо последствий. В качестве короткого краш-теста накопитель «случайно» уронили с метровой высоты на пол, после чего подключили к ПК. В процессе дальнейшей его эксплуатации сбоев в работе не наблюдалось, что подтвердило его устойчивость к динамическим нагрузкам.

Большой объем памяти и прочный корпус, защищающий жесткий диск от динамических нагрузок, позволяют использовать WD Passport не только дома или в офисе, но и в полевых условиях, не беспокоясь за сохранность данных при транспортировке[6].

В настоящее время основные усилия разработчиков сосредоточены на наращивании объемов памяти и сокращении размеров носителей с параллельным снижением энергопотребления.

Уже представлены новые разработки памяти на основе нанокристаллов. Эта технология позволяет уменьшить ячейку и упростить производство памяти, сохраняя при этом ее надежность. Кремниевые нанокристаллы, напоминающие по форме сферу диаметром порядка

50 ангстрем (или пяти миллиардных метра), размещают между двумя оксидными слоями. Запись информации производится за счет способности кристаллов сохранять заряд. Скорость записи флэш-памяти такого типа может быть существенно увеличена благодаря тому, что туннелирование зарядов в нанокристаллы происходит значительно быстрее, чем в стандартные ячейки флэш-памяти. Также ведутся разработки в области увеличения быстродействия за счет записи данных одновременно на несколько ячеек в каждой микросхеме.

Еще одной перспективной технологией считается ферроэлектрический принцип хранения информации – FeRAM (Ferroelectric Random Access Memory). В русскоязычной литературе ферроэлектрики обычно называют сегнетоэлектриками, поскольку впервые их необычные свойства были обнаружены у кристаллов сегнетовой соли. Особенность ферроэлектриков состоит в сравнительно легком изменении величины дипольного момента под влиянием электрического поля (т.е. изменяется сила взаимодействия с заряженными частицами, в том числе электронами). В обычном состоянии ферроэлектрик не является однородно поляризованным, а состоит из доменов с различными направлениями поляризации. Под действием электрического поля кристалл становится однодоменным, причем после выключения поля это состояние сохраняется в течение длительного времени. При воздействии поля противоположного направления значение поляризации также меняется. На этом принципе строится двоичная система.. переключение поляризации происходит за время меньше 1нс. К преимуществам этой технологии следует отнести стойкость к радиации и другим проникающим излучениям.

Предыдущий вид памяти наряду с магниторезистивной MRAM (Magneto-resistive RAM) считается наиболее перспективным преемником флэш-памяти. В основе работы MRAM лежит принцип изменения электрического сопротивления проводника под действием магнитного поля. Сторонники этого вида памяти считают, что она может совершить настоящую революцию, заменив не только флэш, но и DRAM, и SRAM. Ячейка MRAM состоит из двух слоев ферромагнетика, разделенных между собой слоем магниторезистивного материала.

К ферромагнетикам относят вещества, у которых при определенных условиях устанавливается магнитоупорядоченное состояние, так что магнитные моменты атомных носителей магнетизма выстраиваются параллельно, а само вещество намагничивается. В отсутствие внешнего магнитного поля ферромагнетик разбит на хаотично ориентированные домены. Под воздействием магнитного поля эти домены переходят в магнитоупорядоченное состояние.

Сопротивление магниторезистивного материала будет определяться ориентацией магнитных моментов ферромагнитных слоев. Если намагниченность слоев совпадает по направлению, то электрическое сопротивление ячейки мало, что соответствует логической единице. В противном случае ячейка не пропускает электроны, а заворачивает их своим магнитным полем, сопротивление ячейки возрастает, что соответствует логическому нулю. Изменить ориентацию магнитного момента ферромагнитного слоя можно только внешним воздействием. Заслуживающим внимания является и тот факт, что достаточно поменять направление магнитного момента только в одном из ферромагнитных слоев, чтобы изменить состояние ячейки в целом.

Благодаря существованию коэрцитивной силы повлиять на состояние ячейки внешними бытовыми электромагнитными полями довольно сложно, поэтому ячейка MRAM остается для них практически неуязвимой. Скоростные показатели записи в такой ячейке значительно превышают аналогичные параметры для флэш-памяти. Процессы записи/стирания могут осуществляться бесконечное количество раз. Однако размер ячейки и соответственно ее себестоимость пока слишком велики.

Еще одна технология будущего – это NRAM (Nanotube-based или Nonvolatile RAM), в которой для хранения информации используются углеродные нанотрубки. В исходном состоянии они расположены под прямым углом друг к другу и прикрепляются таким образом, что образуют мостики между электродами на поверхности кремниевой пластины. Под воздействием напряжения нанотрубки прогибаются, причем это положение остается стабильным, и после снятия напряжения. Под центром каждого мостика находится еще один электрод, который и сообщает, в каком положении находится мостик. Для возврата в исходное состояние нужно приложить напряжение противоположного знака.

Сложности этой технологии заключаются в реализации точного и равномерного размещения нанотрубок на подложках. Такой вид памяти обещает стать более емким, быстрым и долговечным, чем современная флэш-память.

В качестве одного из ближайших преемников на рынке твердотельной памяти рассматривается Ovonuc Unified Memory (OUM), устройство памяти на аморфных полупроводниках. Аморфное состояние вещества характеризуется отсутствием строгой периодичности в расположении частиц. У веществ в этом состоянии существует определенная согласованность только в расположении соседних частиц. С увеличением расстояния между двумя выбранными атомами согласованность уменьшается, а затем и вовсе исчезает. Кристаллам, напротив, присуще регулярное расположение частиц, которое с определенным периодом повторяется в трех измерениях. В природе аморфное состояние менее распространено, чем кристаллическое, причем большинство веществ получить в таком виде не удается вовсе. Тем удивительнее, что ряд веществ в аморфном состоянии обладает свойствами полупроводников. К последним, в частности, относятся халькогенидные стекла.

В OUM-технологии используются уникальные свойства халькогенидов, открывающие возможность для их практического применения во флэш-памяти. Под действием электрического ока они могут переходить из аморфного состояния в кристаллическое, причем время перехода обычно менее 10-10-10-12с.

Значительное различие величин электрического сопротивления в аморфном и кристаллическом состоянии позволяет определять текущее состояние ячейки, обеспечивая запись логических нуля и единицы. Преимущества этой технологии – большее, чем у флэш-памяти, число максимальных циклов перезаписи, увеличенная скорость доступа, повышенная емкость и низкая себестоимость. Правда, по сравнению с MRAM память OUM обладает меньшим быстродействием.

Существуют также подобные OUM технологии, получившие название Chalcogenide RAM (CRAM) и Phase Change Memory (PRAM). Они также основаны на том, что вещество может переходить из аморфной фазы в кристаллическую под воздействием электрических полей. В отличие от флэш-памяти они устойчивы к воздействию ионизирующего излучения. Однако по энергопотреблению они проигрывают флэш-памяти[7].



ЗАКЛЮЧЕНИЕ

 

Таким образом, можно сказать, что жесткие диски еще долго будут сохранять лидирующие позиции на рынке ВЗУ. Это связано с низкой стоимостью записи по сравнению с CD, которые являются достойными конкурентами по объему записываемой информации. Различные способы хранения и записи информации соответствуют различным целям. На текущий момент не существует универсального ВЗУ, которое может быть использовано как постоянное и переносное одновременно и быть при этом доступным обычным пользователям. По всей видимости, в ближайшие годы нам придется так же пользоваться винчестерами в качестве основного носителя, хотя мысль не стоит на месте, и никто не знает, что еще может изобрести человек в скором времени.

Последние два десятилетия характеризуются стремительным прогрессом развития технологий в области записи и хранения информации, одной из которых является флэш-память. Но технологии развиваются быстро, и как знать, не придется ли через десяток лет сдувать пыль с новостей о применении флэш-памяти.



СПИСОК ЛИТЕРАТУРЫ

 

1. Ефимова О., Морозов В., Шафрин Ю. – «Информатика и вычислительная техника» - М.: АБФ, 1998 – 655С.

2. Макарова Н.В. – «Информатика» - М.: Финансы и статистика, 2005 – 768с.: ил.

3. Фигурнов В.Э. – «IBM PC для пользователя. Краткий курс» - М.: ИНФРА-М, 1998. – 480 с.: ил.

4. Мир ПК. – Старкова М. – «В твердой памяти?» - январь 2006

5. Мир ПК. – Полтев С. – «Система центрального накопления» - март 2006

6. Мир ПК. – Воробьев Р. – «Жесткий отпор флэш-памяти» - октябрь 2006



РАЗДЕЛ 2. ОПИСАНИЕ РАСЧЕТА ИНВАРИАНТНОЙ СМЕТЫ РАСХОДОВ С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ EXCEL

Задание

 

1. Составить расчет инвариантной сметы расходов на ремонт квартиры.

2. Построить диаграмму структуры расходов по смете.

3. Разработать два сценария для расчета расходов при изменении цен на материалы и расценок на выполнение работ.

4. Подобрать параметры для расчета возможных размеров цен при заданной величине расходов.

5. Составить план погашения кредита на расходы по смете и рассчитать будущую стоимость расходов.

РАСЧЕТ ИНВАРИАНТНОЙ СМЕТЫ РАСХОДОВ НА РЕМОНТ КВАРТИРЫ

 

Составить смету на ремонт квартиры на основе следующих данных:

- объект ремонта;

- работы и расценки;

- цены материалов и нормы расхода.

Состав исходных данных, используемых в примере, приведен в табл. 1:


Таблица 1

Исходные данные

 

Расчет сметы состоит из трех расчетов:

- расчет объема работ;

- расчет потребности и стоимости материалов;

- расчет стоимости работ.

Ниже приводятся эти расчеты (см. табл. 2):

 

Таблица 2

Расчет объема работ, потребности и стоимости материалов

 

Объем работ рассчитывается инвариантно, т.е. при помощи функции «ЕСЛИ» в зависимости от количества комнат:

=ЕСЛИ(B26=1;B4*C4;ЕСЛИ(B26=2;B4*C4+B5*C5; «ошибка»));

=ЕСЛИ(B27=1;2*D4*(B4+C4);ЕСЛИ(B27=2;2*D4*(B4+C4)+2*D5*(B5+C5);»ошибка»)).


Рис. 1Пример расчета объема работ

 

Расчет потребности и стоимости материалов рассчитывается по следующим формулам (см. табл. 3):

 

Таблица 3

Расчет потребности и стоимости материалов

Материал Потребность Стоимость
Обои, м =С27*С14 =В30*В15
Клей, кг =С27*С16 =В31*В16
Краска, кг =С26*С17 =В32*В17
Грунтовка, кг =С27*С20 =В33*В20
Бетонит =С27*С21 =В34*В21
Итого материалов   =СУММ (С30:С34)

 

Расчет стоимости работ приведен ниже (см. табл. 4):

 

Таблица 4


Расчет стоимости работ


Рис. 2 Пример расчета стоимости работ

 

Стоимость ремонта рассчитывается в зависимости от вида ремонта: 1-й – стандартный ремонт, 2-й – евроремонт.

Формулы расчета приведены ниже (см. табл. 5):

 

Таблица 5

Формулы расчета стоимости работ

Работы Вид ремонта Стоимость
Покраска потолка 2 =ЕСЛИ(B38=1;C26*B9;ЕСЛИ(B38=2;C26*C9;"ошибка"))
Оклеивание обоями 2 =ЕСЛИ(B39=1;C27*B10;ЕСЛИ(B39=2;C27*C10;"ошибка"))
Штукатурные работы 2 =ЕСЛИ(B40=1;C27*B11;ЕСЛИ(B40=2;C27*C11;"ошибка"))
Итого работы   =СУММ(C38:C40)
Непредвиденные расходы   =C41*0,1
Всего расходов   =СУММ(C35+C41+C42)


Дата: 2019-11-01, просмотров: 159.