РАЗДЕЛ 1. НАКОПИТЕЛИ ИНФОРМАЦИИ: ВИДЫ, ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ТЕНДЕНЦИИ РАЗВИТИЯ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

РАЗДЕЛ 1. НАКОПИТЕЛИ ИНФОРМАЦИИ: ВИДЫ, ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ТЕНДЕНЦИИ РАЗВИТИЯ

ВВЕДЕНИЕ

 

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

В оперативной памяти данные хранятся до выключения питания. Однако существует информация, которую следует хранить долгое время. Для этого компьютеру необходима дополнительная память.

Прежде всего, должно быть устройство, с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Такого рода устройства называются периферийными или внешними запоминающими устройствами (ВЗУ). Таковыми являются накопители на магнитной ленте (стримеры), накопители на дискетах, винчестеры, CD-ROM, магнитооптические диски, флэш-память.



ВИДЫ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ УСТРОЙСТВ ДЛЯ ХРАНЕНИЯ ДАННЫХ

УСТРОЙСТВО ЧТЕНИЯ ПЕРФОКАРТ

 

Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт – картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт и рисунок ткани будет совсем другим – это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков:

– очень низкая скорость доступа к информации;

– большой объем перфокарт для хранения небольшого количества информации;

– низкая надежность хранения информации;

– к тому же от перфоратора постоянно летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах и уборщицы были страшно недовольны.

Перфокартами люди были вынуждены пользоваться не потому что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего.



НАКОПИТЕЛИ НА ГИБКИХ ДИСКАХ

 

Одни из старейших периферийных устройств ПК - накопители на гибких дисках (Floppy Disk Drive), так называемые флоппи-диски. Носителем информации служат дискеты диаметрами 3,5”, 5,25”и 8”. В наши дни дискеты 5,25” используются крайне редко, 8” не используются совсем. Для всех форматов конструкция дискет одинакова. На пластмассовый диск, расположенный в пластиковом футляре наносится магнитный слой для записи информации.

На дискетах размером 5,25 дюйма имеется прорезь для защиты от записи. Если эту прорезь заклеить, то на дискету нельзя будет произвести запись. А на дискетах размером 3,5 дюйма имеется специальный переключатель – защелка, разрешающая или запрещающая запись на дискету. Запись на дискету разрешена, если отверстие, закрываемое защелкой, закрыто, и запрещена, если это отверстие открыто.

Существует понятие “плотность записи”. От нее зависит объем записываемой информации. Существуют стандарты SS/SD, DS/DD, DS/HD для 5/25” объем записываемой информации от 180 Кб до 1.2 Мб. DD, HD и ED для 3,5” дискет, объем записываемой информации от 720 Кб до 2,88 Мб.

Чаще всего встречаются дискеты 3,5” HD. Как носители информации дискеты почти изжили себя. Малый объем, небольшая скорость чтения/записи, ненадежность делают их применение невыгодным. Однако они обладают большой мобильностью.

 

ПРИВОДЫ CD-ROM

 

Ранее использовавшиеся для аудиоаппаратуры компакт-диски были модифицированы для применения в РС и теперь стали неотъемлемой частью современных компьютеров. СD являются отличным носителем информации. Они более компактны, удобны и дешевы чем винчестер, однако, не могут использоваться как HDD, так как стоимость записи и ее скорость намного выше. Привод выполняется как внутренне устройство, и имеет размер дисковода 5,25”. Могут управляться через IDE-, SCSI-интерфейс или звуковую карту. Диск изготавливается из поликарбоната, с одной стороны его покрывают отражающим слоем (из алюминия или золота). Запись осуществляется путем выжигания чередований углублений в металлическом слое лазерным лучом.

Основная характеристика - скорость передачи данных. Единицей считывания является скорость считывания с магнитной ленты. У созданных позже устройств скорость считывания кратна ей и варьируется от 150 Кб/сек до 6-7 Мб/сек. Качество считывания характеризует коэффициент ошибок. Качество является оценкой вероятности искажения информационного бита при его считывании. Этот параметр отражает способность устройства корректировать ошибки чтения/записи.

Среднее время доступа – время, требующееся приводу для поиска необходимых данных на носителе, варьируется от 400 до 80 мс. Буферная память позволяет передавать данные с постоянной скоростью. Существует три типа буферов: динамический, статический и с опережающим чтением. Средняя наработка на отказ составляет 50-125 тысяч часов, что намного опережает сроки морального устаревания устройства.

Существуют также накопители CD-RW, позволяющие производить запись на компакт-диск. При этом диск покрыт слоем термочувствительной краски, с такими же отражающими свойствами, как и у алюминиевого покрытия. Этот привод считается последним достижением в области разработок записываемых компакт дисков.

DVD (Digital Video Disk) – диски, которые сменят CD-ROM, первоначально разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4,7 до 17 Гб.). При этом уровень качества звука и изображения хранимого на DVD приближается к студийному качеству.

В DVD лазерный луч уже, что позволяет снизить толщину защитного слоя диска в 2 раза. Это привело к появлению двухслойных дисков.

Магнитооптические накопители (Magneto-Optical) являются накопителем информации, в основе которого лежит магнитный носитель с оптическим управлением. Сплав, которым покрыта поверхность такого магнитооптического диска, меняет свои свойства как под воздействием тепла, так и под воздействием магнитного поля. Если происходит нагревание диска сверх некоторой температуры, то становится возможным изменение магнитной поляризации с помощью небольшого магнитного поля. На этом свойстве основываются технологии чтения записи магнитооптических дисков. Такие диски могут быть односторонними 3,5” емкости 128, 230, и 640 Мб. Двухсторонними 5,25” емкостью 600 Мб. – 2,6 Гб. 2,5” диски Mini Disk Data фирмы Sony, созданы специально для аудиоустройств и имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3,5 – 7 Гб получили большое распространение при построении оптических библиотек[3].

ФЛЭШ-ПАМЯТЬ

 

Она используется в самых разнообразных цифровых устройствах. Так приятно, когда под рукой есть мобильный телефон, нужная информация находится в карманном компьютере, сделанные фотографии можно увидеть сразу, а не по возвращении из отпуска. Небольшой брелок умеет хранить массу полезных данных: флэш-память также служит памятью в МР3-плеерах и игровых приставках.

Само название Flash впервые применила компания Toshiba в 1984 г. для описания своих новых микросхем, в которых доступ к данным осуществляется «in a flash», т.е. быстро, мгновенно.

Флэш представляет собой твердотельное полупроводникивое устройство, которое не требует дополнительной энергии для хранения данных, т.е. при выключении питания информация сохраняется. Данные с флэш-носителя можно сколько угодно раз считать и ограниченное число раз перезаписать. Последнее связано с тем, что перезапись идет через стирание, которое приводит к износу микросхемы. Современная флэш-память позволяет заменять содержимое ячеек от 10 тыс. до 1 млн. раз.

В отличие от жестких дисков, CD - и DVD-ROM, во флэш-накопителях нет движущихся частей. Это существенно снизило потребление энергии при записи, а также в 5-10 раз по сравнению с жесткими дисками увеличило механическую нагрузку, которую способно выдерживать устройство памяти. Твердотельные носители можно трясти и ронять без ущерба для их работоспособности по оценкам производителей, информация на флэш-микросхемах хранится от 20 до 100 лет.

Благодаря компактным размерам, высокой степени надежности и низкому энергопотреблению твердотельные накопители активно используют в современных портативных устройствах, причем как в качестве съемного носителя, так и для хранения кода ПО[4].

ЗАКЛЮЧЕНИЕ

 

Таким образом, можно сказать, что жесткие диски еще долго будут сохранять лидирующие позиции на рынке ВЗУ. Это связано с низкой стоимостью записи по сравнению с CD, которые являются достойными конкурентами по объему записываемой информации. Различные способы хранения и записи информации соответствуют различным целям. На текущий момент не существует универсального ВЗУ, которое может быть использовано как постоянное и переносное одновременно и быть при этом доступным обычным пользователям. По всей видимости, в ближайшие годы нам придется так же пользоваться винчестерами в качестве основного носителя, хотя мысль не стоит на месте, и никто не знает, что еще может изобрести человек в скором времени.

Последние два десятилетия характеризуются стремительным прогрессом развития технологий в области записи и хранения информации, одной из которых является флэш-память. Но технологии развиваются быстро, и как знать, не придется ли через десяток лет сдувать пыль с новостей о применении флэш-памяти.



СПИСОК ЛИТЕРАТУРЫ

 

1. Ефимова О., Морозов В., Шафрин Ю. – «Информатика и вычислительная техника» - М.: АБФ, 1998 – 655С.

2. Макарова Н.В. – «Информатика» - М.: Финансы и статистика, 2005 – 768с.: ил.

3. Фигурнов В.Э. – «IBM PC для пользователя. Краткий курс» - М.: ИНФРА-М, 1998. – 480 с.: ил.

4. Мир ПК. – Старкова М. – «В твердой памяти?» - январь 2006

5. Мир ПК. – Полтев С. – «Система центрального накопления» - март 2006

6. Мир ПК. – Воробьев Р. – «Жесткий отпор флэш-памяти» - октябрь 2006



РАЗДЕЛ 2. ОПИСАНИЕ РАСЧЕТА ИНВАРИАНТНОЙ СМЕТЫ РАСХОДОВ С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ EXCEL

Задание

 

1. Составить расчет инвариантной сметы расходов на ремонт квартиры.

2. Построить диаграмму структуры расходов по смете.

3. Разработать два сценария для расчета расходов при изменении цен на материалы и расценок на выполнение работ.

4. Подобрать параметры для расчета возможных размеров цен при заданной величине расходов.

5. Составить план погашения кредита на расходы по смете и рассчитать будущую стоимость расходов.

РАСЧЕТ ИНВАРИАНТНОЙ СМЕТЫ РАСХОДОВ НА РЕМОНТ КВАРТИРЫ

 

Составить смету на ремонт квартиры на основе следующих данных:

- объект ремонта;

- работы и расценки;

- цены материалов и нормы расхода.

Состав исходных данных, используемых в примере, приведен в табл. 1:


Таблица 1

Исходные данные

 

Расчет сметы состоит из трех расчетов:

- расчет объема работ;

- расчет потребности и стоимости материалов;

- расчет стоимости работ.

Ниже приводятся эти расчеты (см. табл. 2):

 

Таблица 2

Расчет объема работ, потребности и стоимости материалов

 

Объем работ рассчитывается инвариантно, т.е. при помощи функции «ЕСЛИ» в зависимости от количества комнат:

=ЕСЛИ(B26=1;B4*C4;ЕСЛИ(B26=2;B4*C4+B5*C5; «ошибка»));

=ЕСЛИ(B27=1;2*D4*(B4+C4);ЕСЛИ(B27=2;2*D4*(B4+C4)+2*D5*(B5+C5);»ошибка»)).


Рис. 1Пример расчета объема работ

 

Расчет потребности и стоимости материалов рассчитывается по следующим формулам (см. табл. 3):

 

Таблица 3

Расчет потребности и стоимости материалов

Материал Потребность Стоимость
Обои, м =С27*С14 =В30*В15
Клей, кг =С27*С16 =В31*В16
Краска, кг =С26*С17 =В32*В17
Грунтовка, кг =С27*С20 =В33*В20
Бетонит =С27*С21 =В34*В21
Итого материалов   =СУММ (С30:С34)

 

Расчет стоимости работ приведен ниже (см. табл. 4):

 

Таблица 4


Расчет стоимости работ


Рис. 2 Пример расчета стоимости работ

 

Стоимость ремонта рассчитывается в зависимости от вида ремонта: 1-й – стандартный ремонт, 2-й – евроремонт.

Формулы расчета приведены ниже (см. табл. 5):

 

Таблица 5

Формулы расчета стоимости работ

Работы Вид ремонта Стоимость
Покраска потолка 2 =ЕСЛИ(B38=1;C26*B9;ЕСЛИ(B38=2;C26*C9;"ошибка"))
Оклеивание обоями 2 =ЕСЛИ(B39=1;C27*B10;ЕСЛИ(B39=2;C27*C10;"ошибка"))
Штукатурные работы 2 =ЕСЛИ(B40=1;C27*B11;ЕСЛИ(B40=2;C27*C11;"ошибка"))
Итого работы   =СУММ(C38:C40)
Непредвиденные расходы   =C41*0,1
Всего расходов   =СУММ(C35+C41+C42)


СОСТАВЛЕНИЕ ПЛАНА ПОГАШЕНИЯ КРЕДИТА НА РАСХОДЫ ПО СМЕТЕ И РАСЧЕТ БУДУЩИХ РАСХОДОВ

 

Взят кредит на ремонт квартиры в сумме 75 000 тыс. руб. на один год под 20% годовых с ежеквартальными платежами. Требуется рассчитать сумму ежеквартальных выплат, в том числе по процентам и основному долгу, т.е. составить план погашения кредита с использованием финансовых функций: ППЛАТ, ПЛПРОЦ, ОСНПЛАТ.

План погашения кредита (см. табл. 8):

 

Таблица 8

 

План погашения кредита

 

Формулы расчета приведены ниже (см. табл. 9):

 

Таблица 9

Формулы расчета плана погашения кредита

План погашения кредита

Период

Заем на начало периода Общий платеж Плата по процентам Плата по основному долгу Заем на конец периода

1

=F8

=ПЛТ(20%/4;4;-B$47;0;0)

=ПРПЛТ(20%/4;1;4;-B47;0)

=ОСПЛТ(20%/4;1;4;

-B$47)

=B47-E47

2

=F47

=ПЛТ(20%/4;4;-B$47;0;0)

=ПРПЛТ(20%/4;2;4;-B47;0)

=ОСПЛТ(20%/4;2;4;

-B47)

=B48-E48

3

=F48

=ПЛТ(20%/4;4;-B$47;0;0)

=ПРПЛТ(20%/4;3;4;-B47)

=ОСПЛТ(20%/4;3;4;

B47)

=B49-E49

4

=F49

=ПЛТ(20%/4;4;-B$47;0;0)

=ПРПЛТ(20%/4;4;4;-B47;0)

=ОСПЛТ(20%/4;4;4;

-B47)

=B50-E50

Итого

 

=СУММ(C47:C50)

=СУММ(D47:D50)

=СУММ(E47+E48+E49

+E50)

 

 

Финансовая функция БЗ используется для расчета будущей стоимости вклада. На ремонт квартиры в настоящее время согласно смете требуется 73 тыс. руб. Через три года стоимость ремонта квартиры при ставке 20% и ежеквартальном начислении процентов составит 135 тыс. руб. Окно расчета функции БЗ приведено ниже (см. рис. 6):

 

Рис. 6 Расчет будущей стоимости вклада


[1]Фигурнов В.Э. – «IBM PC для пользователя. Краткий курс» - М.: ИНФРА-М, 1998

[2] Ефимова О., Морозов В., Шафрин Ю. – «Информатика и вычислительная техника» - М.: АБФ, 1998

[3] Макарова Н.В. – «Информатика» - М.: Финансы и статистика, 2005

[4] Мир ПК. – Старкова М. – «В твердой памяти?» - январь 2006

[5] Мир ПК. – Старкова М. – «В твердой памяти?» - январь 2006

[6] Мир ПК. – Воробьев Р. – «Жесткий отпор флэш-памяти» - октябрь 2006

[7]Мир ПК. – Старкова М. – «В твердой памяти?» - январь 2006



РАЗДЕЛ 1. НАКОПИТЕЛИ ИНФОРМАЦИИ: ВИДЫ, ОСНОВНЫЕ ХАРАКТЕРИСТИКИ И ТЕНДЕНЦИИ РАЗВИТИЯ

ВВЕДЕНИЕ

 

В тот самый момент, когда первый компьютер впервые обработал несколько байт данных моментально встал вопрос: где и как хранить полученные результаты? Как сохранять результаты вычислений, текстовые и графические образы, произвольные наборы данных?

В оперативной памяти данные хранятся до выключения питания. Однако существует информация, которую следует хранить долгое время. Для этого компьютеру необходима дополнительная память.

Прежде всего, должно быть устройство, с помощью которого компьютер будет запоминать информацию, затем требуется носитель информации, на котором ее можно будет переносить с места на место, причем другой компьютер должен также легко прочитать эту информацию. Такого рода устройства называются периферийными или внешними запоминающими устройствами (ВЗУ). Таковыми являются накопители на магнитной ленте (стримеры), накопители на дискетах, винчестеры, CD-ROM, магнитооптические диски, флэш-память.



Дата: 2019-11-01, просмотров: 195.