По физико-химическим свойствам и моторным качествам водород сильно отличается от применяемых в настоящее время топлив, что ведет к ряду особенностей в организации и протекании рабочего процесса ДВС.
С воздухом водород устойчиво воспламеняется в широком диапазоне концентраций – вплоть до б=10. Столь низкий предел воспламенения обеспечивает работу водородного двигателя на всех скоростных режимах в широком диапазоне изменения составов смеси: примерно от б=0,2 до б=5. В связи с этим мощность водородного двигателя может изменяться качественным регулированием, при котором его КПД на частичных нагрузках увеличивается на 25 – 50% [9].
Однако, если максимальное значение эффективного КПД двигателя при работе на водороде выше, чем при работе на бензине, то эффективная мощность заметно падает [10]. Последнее обусловлено очень низкой плотностью водорода, что приводит к уменьшению наполнения двигателя топливом. Например, при стехиометрическом составе смеси газообразный водород, подаваемый вместе с воздухом, занимает почти 30% объема цилиндра, тогда как распыленный и испаренный бензиновый заряд только 2- 4%. В целом перевод на водород вызывает снижение мощности двигателя в среднем на 20-25%. Наряду с этим применение водорода ведет к существенному увеличению эмиссии окислов азота с ОГ, основной причиной которого является повышение температуры и скорости сгорания [ ].
Температура воспламенения водородных смесей выше, чем углеводородных, однако благодаря более низким значениям энергии активации для воспламенения водорода требуется меньшее количество энергии. Сравнительные характеристики параметров воспламенения
различных топлив в двигателе с принудительным воспламенением приведены в табл. 4 [ ].
Таблица 4.
Характеристики воспламенения некоторых топлив
Показатель | Водород | Изооктан | Метан |
Температура воспламенения, К | 858 | 810 | 530 |
Потенциал ионизации, эВ | 15,4 | 12,6 | 9,86 |
Минимальная энергия воспламенения, мДж | 0,02 | 0,28 | 0,23 |
Водородно-воздушные смеси характеризуются высокой скоростью сгорания в двигателе (табл.5), причем в стехиометрической области периоды индукции очень малы и сгорание протекает практически при постоянном объеме, что ведет к резкому возрастанию давления.
Скорость нарастания давления в цилиндре водородного двигателя для стехиометрических смесей почти в 3 раза выше по сравнению с бензиновым эквивалентом. При обеднении смеси она снижается и для б=1,9 достигает значений скорости нарастания давления при работе на стехиометрических смесях [ ].
Высокая реакционная способность водорода в ряде случаев приводит к обратным проскокам пламени во впускной трубопровод, преждевременному воспламенению и жесткому сгоранию топливных смесей. В значительной степени эти недостатки могут быть ликвидированы путем соответствующей модификации топливоподающей
Таблица 5.
Характеристики сгорания топливных смесей в ДВС.
Двигатель | Скор Скоростной режим, мин-1 | С Степень сжатия | Скорость распростра нения пламени, м/с. | Время сгорания, град. ПКВ |
Водородный » Бензиновый » | 1500 1500 1500 1500 | 12 14 12 14 | 48,3 51,6 16,45 16,0 | 15,7 14,4 41,0 42,2 |
системы двигателя. В настоящее время для подачи водорода в ДВС применяются следующие способы:
впрыск во впускной трубопровод;
использование модифицированного карбюратора, применяемого в системах питания пропан-бутановыми и природными газами;
индивидуальное дозирование водорода в область впускного клапана каждого цилиндра;
непосредственный впрыск под высоким давлением в камеру сгорания;
Первые два способа обеспечивают устойчивую работу двигателя лишь совместно с такими мероприятиями как частичная рециркуляция ОГ, присадка воды к топливному заряду, а также добавка к нему бензина.
Рис.3.Устройства для дозирования водорода под впускной клапан.
Частичная рециркуляция ОГ за счет разбавления заряда инертными компонентами предотвращает обратные вспышки и смягчает сгорания при работе двигателя на стехиометрических и богатых смесях. Количество рециркулируемых газов, как правило, не превышает 10-20% от поступающего в двигатель топливного заряда, однако любая степень рециркуляции ведет к дополнительным потерям наполнения цилиндра. В отличие от рециркуляции ОГ добавление воды или бензина (обычно впрыском во впускной трубопровод) не приводит к ухудшению наполнения двигателя.
Типичные два варианта индивидуального дозирования водорода показаны на рис.3. В конструкции (рис. 3,а) подача Н2 в камеру сгорания происходит следующим образом. На такте всасывания впускной клапан открывается, освобождая тем самым расходные отверстия трубопроводов 4, подающих водород [ ]. Под действием разряжения в цилиндре водород всасывается в камеру сгорания. Так как в системе впуска отсутствуют дросселирующие участки, величины разряжения при впуске будут несколько снижены, благодаря чему снижается количество масла, засасываемого через поршневые кольца в камеру сгорания и сгорающего вместе с топливом. Это приводит к уменьшению вредных выбросов ДВС, особенно при старении двигателя и износе поршневых колец. По другому варианту конструкции (рис.3,б) дозирующее устройство обеспечивает впрыск водорода непосредственно на впускной клапан 3 [ ]. Центральный поршенек 2 поддерживается в постоянном контакте с поверхностью впускного клапана посредством легкой пружины 1 и давления газа, которое составляет примерно 0,1 МПа. Устройство отрегулировано таким образом, что отверстия для впуска Н2 открываются позже впускного клапана 3, а закрываются раньше, при этом время их открытия соответствует половине времени открытия впускного клапана.
Наилучшие результаты дает организация впрыска водорода непосредственно в камеру сгорания. При этом полностью исключаются обратные вспышки во впускном трубопроводе, а максимальная мощность не только не снижается, но даже может быть повышена на 10-15% [ ].
Использование водорода в дизельных двигателях затрудняется его высокой температурой самовоспламенения. Поэтому для организации устойчивого воспламенения водорода дизели конвертируются в двигатели с принудительным зажиганием от свечи или запальной дозы жидкого топлива. При этом водород может подаваться как совместно с воздухом, так и путем непосредственного впрыска в цилиндры. Однако устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограниченном пропусками воспламенения и детонацией. В случае газожидкостного процесса граница детонации (см. рис.4) определяется составом смеси и ее температурой [ ]. Повышение дозы запального топлива улучшает антидетонационную стойкость смеси и в то же время расширяет границы воспламенения. Поэтому нормальная работа водородного дизеля возможна только при строго определенном минимальном расходе запального топлива, определяемом режимом работы и составом смеси.
Следует отметить, что при работе ДВС на водороде значительно уменьшается выделение твердых частиц примерно в 1000 раз по сравнению с бензином. Благодаря этому, а также отсутствию органических кислот, образующихся при сжигании углеводородов, увеличивается срок службы двигателя и сокращаются затраты на его ремонт.
Рис.4. Границы устойчивой работы дизельного двигателя на водороде:
1-детонация; 2-воспламенение.
Дата: 2019-07-30, просмотров: 207.