На персональном компьютере операционную систему можно загрузить не с жесткого, а с гибкого диска. Это позволяет обойти проблемы, связанные с отказом жесткого диска и разрушением загрузочных разделов. Однако, поскольку с помощью гибкого диска можно загружать различные операционные системы, любой пользователь, получивший физический доступ к компьютеру, может обойти встроенную систему управления доступом файловой системы NTFS и с помощью определенных инструментов прочесть информацию жесткого диска. Единственно надежный способ защиты информации — это шифрующая файловая система. На рынке программного обеспечения существует целый набор продуктов, обеспечивающих шифрование данных с помощью образованного от пароля ключа на уровне приложений. Однако такой подход имеет ряд ограничений.
· Ручное шифрование и дешифрование. Службы шифрования большинства продуктов непрозрачны для пользователей. Пользователю приходится расшифровывать файл перед каждым его использованием, а затем опять зашифровывать. Если пользователь забывает зашифровать файл по окончании работы с ним, информация остается незащищенной. Поскольку каждый раз необходимо указывать, какой файл должен быть зашифрован (и расшифрован), применение такого метода защиты информации сильно затруднено.
· Утечка информации из временных файлов и файлов подкачки. Практически все приложения в процессе редактирования документов создают временные файлы. Они остаются на диске незашифрованными, несмотря на то, что оригинальный файл зашифрован. Кроме того, шифрование информации на уровне приложений выполняется в режиме пользователя. Это значит, что ключ, применяемый для такого типа шифрования, может храниться в файле подкачки. В результате, с помощью изучения данных файла подкачки можно получить ключ и расшифровать все документы пользователя.
· Слабая криптостойкостъ ключей. Ключи образуются от паролей или случайных фраз. Поэтому в случае, если пароль был легко запоминаемым, атаки с помощью словарей могут привести к быстрому взлому системы защиты.
· Невозможность восстановления данных. Большинство продуктов, позволяющих шифровать информацию, не предоставляют средств восстановления данных, что для пользователей является дополнительным поводом не применять средства шифрования. Это особенно касается тех работников, которые не хотят запоминать дополнительный пароль. С другой стороны, средство восстановления данных с помощью пароля — еще одна брешь в системе защиты информации. Все, что необходимо злоумышленнику, — это пароль, предназначенный для запуска механизма восстановления данных, который позволит получить доступ к зашифрованным файлам.
Все перечисленные выше проблемы позволяет решить шифрующая фашювая система (Encrypting File System, EFS), впервые реализованная в Windows 2000 и работающая только на NTFS 5.0. В следующих разделах подробно описаны технология шифрования, место шифрования в операционной системе, взаимодействие с пользователями и способ восстановления данных.
Архитектура EFS
EFS содержит следующие компоненты операционной системы (рис. 7).
· Драйвер EFS. Драйвер EFS является надстройкой над файловой системой NTFS. Он обменивается данными со службой EFS — запрашивает ключи шифрования, наборы DDF (Data Decryption Field) и DRF (Data Recovery Field), — а также с другими службами управления ключами. Полученную информацию драйвер EFS передает Библиотеке реального времени файловой системы EFS (File System Run-Time Library, FSRTL), которая прозрачно для операционной системы выполняет различные операции, характерные для файловой системы (чтение, запись, открытие файла, присоединение информации).
· Библиотека реального времени файловой системы EFS. FSRTL — это модуль, находящийся внутри драйвера EFS, реализующий вызовы NTFS, выполняющие такие операции, как чтение, запись и открытие зашифрованных файлов и каталогов, а также операции, связанные с шифрованием, дешифрованием и восстановлением файлов при их чтении или записи на диск. Хотя драйверы EFS и FSRTL реализованы в виде одного компонента, они никогда не обмениваются данными напрямую. Для передачи сообщений друг другу они используют механизм вызовов (callouts) NTFS, предназначенный для управления файлами. Это гарантирует, что вся работа с файлами происходит при непосредственном участии NTFS. С помощью механизма управления файлами операции записи значений атрибутов EFS (DDF и DRF) реализованы как обычная модификация атрибутов файла. Кроме того, передача ключа шифрования файла РЕК (см. ниже), полученного службой EFS, в FSRTL выполняется так, чтобы он мог быть установлен в контексте открытого файла. Затем контекст файла используется для автоматического выполнения операций шифрования и дешифрования при записи и чтении информации файла.
Рисунок 7. Архитектура EFS
· Служба EFS. Служба EFS (EFS Service) является частью системы безопасности операционной системы. Для обмена данными с драйвером EFS она использует порт связи LPC, существующий между Локальным администратором безопасности (Local Security Authority, LSA) и монитором безопасности, работающим в привилегированном режиме. В режиме пользователя для создания ключей шифрования файлов и генерирования данных для DDF и DRF служба EFS использует CryptoAPI. Она также поддерживает набор API для Win32.
· Набор API для Win32. Этот набор интерфейсов прикладного программирования позволяет выполнять шифрование файлов, дешифрование и восстановление зашифрованных файлов, а также их импорт и экспорт (без предварительного дешифрования). Эти API поддерживаются стандартным системным модулем DLL — advapi32.dll.
Технологии шифрования EFS
Данный раздел поможет вам понять, как шифруется информация и почему перед использованием EFS обязательно экспортировать сертификаты (вместе с личными ключами) пользователей и агентов восстановления данных. Очень часто непонимание этих моментов приводит к тому, что зашифрованные данные безвозвратно теряются по вине пользователей. EFS основана на шифровании с открытым ключом и использует все возможности архитектуры CryptoAPI. Каждый файл шифруется с помощью случайно сгенерированного ключа, зависящего от пары открытого (public) и личного, закрытого (private), ключей пользователя. Подобный подход в значительной степени затрудняет осуществление большого набора атак, основанных на криптоанализе. При криптозащите файлов может быть применен любой ачгоритм симметричного шифрования. EFS позволяет осуществлять шифрование и дешифрование файлов, находящихся на удаленных файловых серверах.
Примечание
В данном случае EFS может работать только с файлами, находящимися на диске. Шифрующая файловая система не осуществляет криптозащиту данных, передаваемых по сети. Для шифрования передаваемой информации следует применять специальные сетевые протоколы, например SSL/PCT.
В EFS для шифрования и дешифрования информации используются открытые ключи. Данные зашифровываются с помощью симметричного алгоритма с применением Ключа шифрования фаша (File Encryption Key, FEK). FEK — это сгенерированный случайным образом ключ, имеющий определенную длину.
В свою очередь, FEK шифруется с помощью одного или нескольких открытых ключей, предназначенных для криптозашиты ключа. В этом случае создается список зашифрованных ключей FEK, что позволяет организовать доступ к файлу со стороны нескольких пользователей. Для шифрования набора FEK используется открытая часть пары ключей каждого пользователя. Список зашифрованных ключей FEK хранится вместе с зашифрованным файлом в специальном атрибуте EFS, называемом Полем дешифрования данных (Data Decryption Field, DDF). Информация, требуемая для дешифрования, привязывается к самому файлу. Секретная часть ключа пользователя используется при дешифровании FEK. Она хранится в безопасном месте, например на смарт-карте или другом устройстве, обладающем высокой степенью защищенности. FEK применяется для создания ключей восстановления. Для этого FEK шифруется с помощью одного или нескольких открытых мючей восстановления. Список FEK, зашифрованных для целей восстановления, хранится вместе с зашифрованным файлом в специальном атрибуте EFS, называемом Полем восстановления данных (Data Recovery Field, DRF). Благодаря существованию набора зашифрованных ключей FEK агенты восстановления данных могут дешифровать файл. Для шифрования ключа FEK в поле DRF необходима только общая часть пары ключей восстановления, ее присутствие в системе необходимо в любой момент времени для нормального функционирования файловой системы. Сама процедура восстановления выполняется довольно редко, когда пользователь увольняется из организации или забывает секретную часть ключа. Поэтому агенты восстановления могут хранить секретную часть ключей восстановления в безопасном месте, например на смарт-картах или других хорошо защищенных устройствах.
Дата: 2019-07-30, просмотров: 260.