На тему: «Усовершенствование технологии установки висбрекинга гудрона мощностью по сырью 800 тысяч т/год”.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Курсовой проект

по дисциплине:

“Химия и технология переработки композиционных материалов”

На тему: «Усовершенствование технологии установки висбрекинга гудрона мощностью по сырью 800 тысяч т/год”.

 

 

Выполнил:

Проверил:

 

 

2008



Содержание

 

Введение

Основная часть

I. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

I.I. Информационный анализ

1.2.Характеристика исходного сырья, вспомогательных материалов и готовой продукции

1.3.Описание технологического процесса

1.4.Основные параметры технологического процесса

1.5. Техническая характеристика основного технологического оборудования

1.6.Технологические расчеты

1.6.1. Материальные расчеты

1.6.2. Расчет основного технологического оборудования

1.6.3. Энергетические расчеты

2 . РАЗДЕЛ «КИП и А»

3. РАЗДЕЛ «БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА»

ЗАКЛЮЧЕНИЕ

Список используемой литературы



Введение

 

Нефть и газ– это основные источники энергии в современном мире. На топливах, полученных из них, работают двигатели сухопутного, воздушного и водного транспорта, тепловые электростанции. В настоящее время насчитывается 100 различных процессов первичной и вторичной переработки нефти, реализованных в промышленности. Намечается внедрение новых, весьма перспективных разработок, направленных на улучшение продукции и совершенствование технологии.

Производство нефтепродуктов и химического сырья из нефти организовано на нефтеперерабатывающих заводах (НПЗ). Переработка нефти на НПЗ осуществляется с помощью различных технологических процессов, которые могут быть условно разделены на следующие группы:

1.первичная переработка ( обессоливание и обезвоживание, атмосферная и атмосферно – вакуумная перегонка нефти, вторичная перегонка бензинов, дизельных и масляных фракций);

2.термические процессы (термический крекинг, висбрекинг, коксование, гидролиз);

3.термокаталические процессы (каталический крекинг–реформинг, гидроочистка,

4.процессы переработки нефтяных газов (алкилирование, полимеризация, изомеризация);

5.процессы производства масел и парафинов ( деасфальтизация , депарафинизация, селективная очистка, адсорбционная и гидрогенизационная доочистка);

6.производство битумов, пластичных смазок, присадок, нефтянных кислот, сырья для получения технического углерода;

7.процессы производства ароматических углеводородов ( экстрация , гидроалкилирование, деалформинг, диспропорционирование).

Нефти по своему составу и свойствам различаются весьма значительно. Физико – химические свойства нефтей и составляющих их фракций оказывают влияние на выбор ассортимента и технологию получения нефтепродуктов. При определении направления переработки нефти стремятся по возможности максимально использовать индивидуальные природные особенности химического состава.

Переработку нефтей малосернистых высокопарафинистых и высокосернистых парафинистых осуществляют с одновременным получением фракций бензина, керосина, дизельного топлива, вакуумного газойля и гудрона.

Количество и ассортимент продукции, вырабатываемой нефтеперерабатывающей и нефтехимической промышленностью, непрерывно увеличивается. Соответственно эти отрасли промышленности пополняются новой аппаратурой и осваивают новые технологические процессы переработки нефтяного сырья, направленные на улучшение качества, увеличения целевых продуктов и снижения себестоимости.

Наибольшую трудность в нефтепереработке представляет квалифицированная переработка гудронов (особенно глубоковакуумной перегонки) с высоким содержанием асфальто – смолистых веществ, металлов и других гетеросоединений, требующая значительных капитальных и эксплуатационных затрат. В этой связи на ряде НПЗ нашей страны и за рубежом ограничиваются переработкой гудронов с получением таких не топливных нефтепродуктов, как котельное топливо, битум, нефтяной пек, нефтяной кокс и т.д.

Гудроны, остатки после атмосферно – вакуумной отгонки фракций обессоленных нефтей, перегоняющихся до 480 – 500оС, содержатся в различных нефтях от 15 до 40% .

Получающийся гудрон непосредственно не может быть использован как котельное топливо из-за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов – это висбрекинг с целью снижения вязкости, что уменьшает расход разбавителя на 20 – 25% масс, а также соответственно увеличивает общее количество котельного топлива.

Висбрекинг (в переводе с английского “cнижение вязкости”) – процесс крекинга гудрона, проводимый при температурах 450 – 480оС с целевым назначением снижения вязкости котельного топлива.

Висбрекинг проводят при менее жестких условиях, чем термокрекинг, вследствие того, что во – первых, перерабатывают более тяжелое, следовательно, легче крекируемое сырье; во – вторых, допускаемая глубина крекинга ограничивается началом коксообразования ( температура 440 – 500оС, давление 1,4 – 3,5 МПа ).

При относительно невысоких температурах и протекании реакций в жидкой фазе образующиеся крупные радикалы преимущественно стабилизируются и процесс

протекает в направлении уменьшения среднего размера молекул:

 


R1R2 R1* + R2*

R1*( R2* ) + RH R1H + R2H + R*,

 

в результате чего, после отделения газообразных продуктов и бензиновых фракций, остаток имеет меньшую вязкость, чем исходное сырье.

Исследованиями установлено, что по мере увеличения продолжительности (тоесть углубления) крекинга, вязкость крекинг-остатка в начале интенсивно снижается, достигает минимума, а затем возрастает. Экстремальный характер изменения зависимости вязкости остатка от глубины крекинга можно объяснить следующим образом. В исходном сырье (гудроне) основным носителем вязкости являются нотивные асфальтены “рыхлой” структуры. При малых глубинах превращения снижение вязкости обуславливается образованием в результате термо – декструктивного распада боковых алифатических структур молекул сырья на более компактных подвижных вторичных асфальтенов меньшей молекулярной массы. Последующее возрастание вязкости крекинг – остатка объясняется образованием продуктов уплотнения – карбенов и карбоидов, также являющихся носителями вязкости. Считается, что более интенсивному снижению вязкости крекинг – остатка способствует повышение температуры при соответствующем сокращении продолжительности висбрекинга.

К преимуществам висбрекинга перед другими процессами относятся: гибкость процесса, что позволяет непосредственно перерабатывать тяжелые нефтяные остатки, относительная простота технологии, низкие капитальные и эксплуатационные затраты. Висбрекинг характеризуется невысокой конверсией нефтяных остатков, но позволяет в 10 и более раз снизить вязкость исходного сырья с целью получения стандартного котельного топлива, что дает возможность высвободить большую часть прямогонного вакуумного газойля для продажи.

Процесс висбрекинга гудрона в технологической схеме НПЗ играет важную роль, поскольку оказывает очень сильное влияние на глубину переработки нефти и на общие экономические показатели производства нефтепродуктов. Позволяет корректировать структуру выхода продуктов, для более полного соответствия потребностям рынка, и достичь следующих целей:

- увеличить глубину переработки нефти на 16 – 18% и достичь уровня 70 – 72%

- высвободить дополнительный объем вакуумного газойля для продажи.

- увеличить производство более ценного топочного мазута.

- повысить выработку автомобильного бензина на 1,4-2% масс на нефть.

Внедрение процесса Висбрекинга гудрона позволяет значительно улучшить экономические показатели предприятия.


Основная часть

Технологический раздел

Информационный анализ

 

Висбрекинг – особая разновидность термического крекинга, термодеструктивный процесс превращения тяжелого нефтяного сырья в жидкие, газообразные и твердые продукты. Сырьем процесса являются, главным образом, гудроны, полугудроны и мазуты. Эти нефтяные остатки характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением, свойствами и размерами частиц структурных образований, уровнем молекулярного взаимодействия в системе.

Согласно представлениям (4) остаточный нефтепродукт может быть представлен как коллоидная система, в котором дисперсная фаза состоит из мицеллы, содержащей асфальтены, смолисто-асфальтеновые вещества и высокомолекулярные мальтены.

Мицелла состоит из ядра асфальтенов, на которых адсорбированы высокомолекулярные ароматические углеводороды из мальтеновой фракции. Эти высокомолекулярные углеводороды с повышенным (по сравнению с асфальтенами) содержанием водорода на ядрах. В стабильном нефтепродукте система сорбируемых мальтенов такова, что все сорбционные силы оказываются нейтрализованными. Мицелла находится в физическом равновесии с окружающей вязкой фазой. Другими словами, асфальтены пептизированы и находятся в коллоидно-дисперсном состоянии.

Сорбционное равновесие может быть нарушено несколькими способами, например, добавлением углеводородов с высоким содержанием водорода (алифатические углеводороды), повышением температуры или другими воздействиями. Часть сорбированных компонентов растворяются в сплошной мальтеновой фазе, за счет преципитации асфальтеновых цепей.(4)

Представления о нефти и о нефтепродуктах как о нефтяных дисперсных системах, во многом проясняют химизм и механизм реакций, протекающих в них и, таким образом, позволяют прогнозировать поведение системы и пути интенсификации процессов.

В практике нефтепереработки наиболее распространенными являются нефтяные дисперсные системы с дисперсионной фазой в твердом, жидком и газообразном состоянии и жидкой дисперсной средой.

Термическое превращение нефтяных фракций - сложный химический процесс. Сырье, поступающее на висбрекинг, состоит из трех основных классов углеводородов: парафиновых, нафтеновых и ароматических. Превращение углеводородов разных классов при умеренном термическом крекинге происходит с различной трудностью. Легче всего подвергаются крекированию (расщеплению) парафиновые углеводороды, наиболее устойчивые к температурному воздействию ароматические, нафтеновые углеводороды занимают промежуточное положение.

Скорость распада углеводородов одного и того же класса возрастает с увеличением молекулярного веса. Поэтому на промышленных установках легкое сырье (лигрол, керосино-газойлевые фракции) крекируются при более жестком температурном режиме 530-540 0С и 500-510 0С соответственно, а тяжелое сырье (гудрон) при более мягком температурном режиме 470-490 0С. Для крекинга парафиновых углеводородов характерны реакции их распада на более низкомолекулярные компоненты с образованием алкена и алкана. Низкомолекулярные углеводороды - этан, пропан и бутаны могут также дегидрироваться:

 

 CnH2 n+2 CnH2 n+H2

 

С увеличением молекулярного веса алкана, вероятность дегидрирования уменьшается. Продукты первичного распада реагируют с другими углеводородами и между собой, а также распадаются дальше.

Термическая устойчивость простейших газообразных парафиновых углеводородов очень велика. Так, этан при температуре ниже 700-800 0С практически не разлагается. По мере увеличения молекулярного веса алкана термическая устойчивость его падает и преобладающим становятся реакции расщепления по связям С-С, менее прочной, чем связь С-Н.

Место разрыва, а, следовательно, преимущественное образование тех или иных продуктов реакции зависит от температуры и давления. Чем выше температура и ниже давление, тем место разрыва углеродной цепи все больше смещается к ее концу и значительно возрастает выход газообразных продуктов.

При температуре 400-500 0С разрыв происходит по середине цепи.

Нафтеновые углеводороды термически стабильны. Однако, при крекинге нафтеновые углеводороды с длинными боковыми цепями ведут себя так же, как парафиновые: с увеличением длины боковой цепи их термическая устойчивость снижается.

Для нафтеновых углеводородов наиболее характерны следующие типы превращения при высоких температурах:

- деалкилирование или отщепление боковых алкановых цепей;

- дегидрирование кольца с образованием цикло-олефинов и ароматических углеводородов;

- частичная или полная дециклизация полициклических нафтенов после деалкилирования;

- распад моноциклических нафтенов на олефины или парафин-диолефины.

Ароматические углеводороды наиболее термически устойчивы. Поэтому они накапливаются в жидких продуктах крекинга тем в больших количествах, чем выше температура процесса.

Голоядерные (лишенные боковых цепей) ароматические углеводороды, так же как и алкилированные углеводороды с короткими боковыми цепями, практически не подвергаются распаду. Единственным направлением их превращений является конденсация с выделением водорода. В результате происходит накопление полициклических углеводородов.

В результате конденсации бензола, нафталина и других голоядерных углеводородов образуются дифенил, динафтил и им подобные углеводороды:

 

2C6H6 C6H5 – C6H5 + H2

2C10H8 C10H7 – C10H7 + H2

 

Для алкилароматических углеводородов характерна конденсация через метильные группы, а не путем соединения бензольного кольца.

 

 2CH3 – C6H4 – CH3 CH3 – C6H4 – CH2 – CH2 – C6H4 – CH3 + H2

 

Ароматические углеводороды с длинными боковыми цепями способны деалкилироваться.

Если длина цепи алкилированного ароматического углеводорода значительна, то по термической стабильности он приближается к парафиновому углеводороду.

Развитие реакций конденсации разнообразных циклических углеводородов приводит в конечном итоге к образованию карбоидов (кокса). Эта особенность ароматических углеводородов делает их нежелательными компонентами сырья крекинга.

В сырье для крекинга ненасыщенные углеводороды отсутствуют, но роль их в химии крекинга велика, т.к. они всегда образуются при распаде углеводородов других классов. Олефинами свойственны самые разнообразные реакции. Умеренные температуры (до 500 0С) и высокие давления способствуют протеканию реакций полимеризации олефинов, высокие температуры и низкие давления вызывают реакции распада.

Разложение олефинов может протекать в различных направлениях:


CnH2n 2CmH2                                                  (деполимеризация);

CnH2n CmH2m + CgH2g                      (распад);

CnH2n CmH2m + 2 + CgH2g + CpH2p – 2    (деструктуризация конденсата);

CnH2n CmH2m – 2 + H2                      (деструктивная конденсация);

CnH2n CmH2m – 2 + CgH2g + 2          (распад).

 

В области умеренных температур, где константы скорости термической полимеризации олефинов уменьшаются с повышением молекулярного веса исходного углеводорода.

В области высоких температур наблюдается обратное явление: подобное парафинам, с увеличением молекулярного веса олефинов термическая устойчивость их падает.

Наряду с полимеризацией и разложением идет циклизация и дегидроциклизация олефинов, а также протекает реакция перераспределения водорода с образованием системы парафин-диолефин.

Основная масса сернистых соединений нефти имеет большую молекулярную массу и высокую температуру кипения. Поэтому от 70 до 90 % всех сернистых соединений концентрируется в мазуте и гудроне.

При разложении сернистых соединений выделяется сероводород, который уходит вместе с газами крекинга, образуются жидкие сернистые компоненты (например, меркаптаны), переходящие в бензиновые фракции крекинга. Возможно, выделение свободной серы:

 

R – S – RI H2S + олефины;

R – S – RI R-S-H + олефины

 

Термически устойчивые сернистые соединения (тиофены и им подобные) накапливаются в высокомолекулярных продуктах.

Механизм крекинга.

Сырьем для промышленных установок термического крекинга является смесь многих углеводородов сложного строения. Детально и точно объяснить механизм крекинга не представляется возможным из-за одновременного протекания различных реакций.

Считается, что распад углеводородов имеет цепной характер и подчиняется теории свободных радикалов.

На основании, ряда работ Н.Н. Семенов показал, что реакции крекинга полностью протекают по радикально-цепному механизму.

Согласно этой теории первичный распад алканов под воздействием повышенной температуры происходит по связям С-С с образованием двух радикалов различной молекулярной массы.

 

CH3 (CH2) 5CH3 C4H9 + C3H7

 

Радикалы весьма реакционно способны и в зависимости от их размеров и применяемых условий могут:

- взаимодействовать с другими углеводородами;

- разлагаться на олефин и меньший радикал;

- рекомбинировать с другими свободными радикалами;

- вступать в реакции с поверхностями металла.

Радикалы, содержащие более двух атомов углерода, диспропорционируют на меньший радикал и олефин:

         


C8H17 C4H8 + C4H9

     
 


                                           C3H6 + CH3        

 

Распад радикалов продолжается до образования метильных и этильных радикалов или же олефинов и атомарного водорода.

    Метильный и этильный радикалы реагируют с молекулами исходного углерода, образуя при этом СН4, С2Н6 и новый радикал:

     
 


С6Н5 + С6Н4 С2Н6 + С6Н13

 

Цепная реакция свободных радикалов обрывается в результате рекомбинации двух радикалов:

 


С6Н13 + СН3 С7Н16

 

или в результате взаимодействия радикала с поверхностью металла.

Механизм распада алкенов так же как алканов, имеет цепной характер.

Теория свободных радикалов позволяет объяснить протекание реакций разложения, она объясняет образование более тяжелых соединений, чем молекулы исходного сырья. Эти соединения, выводимые на промышленных установках в виде котельного топлива, образуются в результате полимеризации олефинов и реакций уплотнения ароматических углеводородов с последующей конденсацией в полициклические асфальтеновые компоненты.

Термодинамика крекинга.

Реакции, происходящие при термическом крекинге, представляют собой совокупность реакций разложения и конденсации. Поскольку преобладают реакции разложения, сопровождающиеся поглощением тепла, то они перекрывают экзотермический эффект реакций конденсации.

Суммарный тепловой эффект термического крекинга отрицателен, и поэтому необходимо подводить тепло со стороны.

Значение величин теплоты реакции необходимо при проектировании реакционных аппаратов. Теплота реакции может быть определена по уравнению:

 

Н = 50000 (Мс – Мп) / МсМп, где

Н – теплота крекинг-процесса в ккал/кг при 25 0С и I ат;

Мс – молекулярный вес сырья;

Мп – молекулярный вес продуктов реакции.

Чаще теплоту реакции крекинга определяют при помощи закона Гесса:

 

Qреак. = Qг + QБ + Q п.ф. + Qо – Qс, где

 

Qреак. – теплота реакции;

Qг, QБ, Qп.ф., Qо, Qс – теплота сгорания газа, бензина, промежуточной фракции, остатка и сырья полученные экспериментально.

Теплота реакции термического крекинга выражается в расчете на 1 кг. Крекируемого или превращенного сырья. Так, тепловой эффект висбрекинга тяжелого нефтяного сырья составляет 28-56 ккал на 1 кг. сырья.

При глубине разложения 25-30 % тепловой эффект реакции находится на уровне 28-30 ккал/кг сырья.

Глубина превращения сырья

При крекинге не очень тяжелого по фракционному составу сырья глубину его превращения характеризуют выходом бензина.

Для тяжелого остаточного сырья выход бензина менее характерен, т.к. первичными продуктами разложения являются более тяжелые фракции и цель процесса – получение крекинг-остатка пониженной вязкости или газойлевых фракций.

При висбрекинге целевым продуктом является крекинг-остаток. Потенциальный выход последнего определяется его качеством. Основным требованием, предъявленным к качеству остатка, является его вязкость.

При неглубоком крекинге остаточного сырья остаток по плотности и вязкости может отличаться от сырья совсем незначительно. С углублением процесса остаток разбавляется, с одной стороны, образующимися при крекинге газойлевыми фракциями, с другой маловязкими полимерами. При этом, чем меньше плотность и вязкость получаемого остатка висбрекинга, тем ниже будет выход бензина.

Выход бензина при висбрекинге составляет - 2÷5 % масс. на сырье.

Технологическое оформление процесса.

Принятая проектом технология процесса висбрекинга гудрона предусматривает термическое его разложение при высокой температуре (до 500 0С) и давлением до 37 кгс/см2 в трубчатой печи, сочетающей нагревательный и реакционный змеевик, с последующим охлаждением реакционной массы на выходе из печи циркулирующим потоком остатка висбрекинга (квенчинг) до 420 0С. разделение продуктов крекинга осуществляется в колонне при давлении 4,5÷4,8 кгс/см2, при малом (до одной минуты) времени пребывания жидкой фазы в ректификационной колонне первичного испарения.

Выделенная дизельная фракция в концентрационной части ректификационной колонны первичного испарения после охлаждения вовлекается совместно с рабочей жидкостью с вакуумного блока установки ЭЛОУ-АВТ-6 в количестве обеспечивающей получение мазута топочного вторичного.

Предусмотрены мероприятия, замедляющие коксообразование:

- использование в качестве турбулизатора подачи в реакционный змеевик печи П-104 водяного конденсата.

Факторы, влияющие на процесс.

Важнейшими факторами, определяющими процесс легкого термического крекинга, являются давление, температура и продолжительность крекинга, подача турбулизаторов и рециркуляция продуктов крекинга и другие.

Давление.

Давление существенного влияния на процесс висбрекинга не оказывает, если крекинг тяжелых нефтепродуктов протекает в жидкой фазе при температуре 420÷480 0С.

Влияние давления повышается, как только образующиеся продукты распада или исходное сырье переходят в паровую фазу (480÷500 0С).

 Обычно при крекинге остаточного сырья применяют невысокое давление в пределах 25 кгс/см2.

Это позволяет:

- вести процесс в жидкой фазе;

- быстро выводить из реакционного змеевика первичные продукты распада – газойлевые фракции, не давая им разлагаться на газ и бензин.

Повышение давления увеличивает количество продуктов уплотнения.

Температура.

Температура и продолжительность крекинга являются факторами при определенных температурах взаимозаменяемыми. Увеличивая температуру крекинга и уменьшая продолжительность времени пребывания в зоне высоких температур, можно получить ту же глубину разложения сырья, что и при более мягкой температуре, но с большей длительности крекинга.

Процесс висбрекинга представляет собой совокупность реакций разложения и уплотнения молекул. При уменьшенных температурах 420-450 0С преобладают реакции полимеризации и уплотнения, а при более высоких 450-500 0С реакции расщепления. С повышением температуры скорость реакции обоего типа возрастает. Однако, скорость реакций разложения увеличивается значительно быстрее, чем реакций уплотнения и эта разница будет тем больше, чем выше температура.

Действие температуры наблюдается в широком диапазоне глубины превращения гудрона и объясняется разным значением энергии активации реакций распада и уплотнения.

При термическом крекинге гудрона средняя энергия активации распада составляет 55000 калл/моль, а уплотнения 30000 калл/моль, при этом температурные градиенты скорости реакций собственно равны 15 и 28 0С, т.е. реакции уплотнения значительно менее чувствительны к температуре, чем реакции распада. Таким образом, процесс термокрекинга остаточных фракций целесообразно вести при повышенных температурах.

Вязкость получаемого остатка висбрекинга во многом зависит от температуры.

С повышением температуры крекинга выход продуктов уплотнения уменьшается, а продуктов распада (особенно газа и бензина) возрастает.

От температуры крекинга зависит вязкость получаемого остатка висбрекинга. Температурный предел 500-510 0С считается оптимальным для снижения вязкости остатка висбрекинга при глубине крекинга 20 % и более.

Для получения товарного мазута вторичного топочного глубина разложения сырья должна быть на уровне 25-30 %. Такая глубина превращения обеспечивает получение средних фракций в количестве, необходимом для разбавления остатка висбрекинга, позволяющем снизить его вязкость и температуру застывания до нужной величины.

Оптимальная глубина разложения, обеспечивающая получение товарного мазута вторичного топочного, достигается при проведении процесса висбрекинга при температуре 480-500 0С и малом времени пребывания сырья.

Подача турбулизаторов и рециркуляция продуктов крекинга.

Снижение вязкости при висбрекинге происходит за счет разложения крупных молекул на более мелкие с образованием газа, низкооктанового бензина с высоким содержанием непредельных углеводородов и средних дистиллятных фракций.

 Наряду с дистиллятными фракциями, образуется значительное количество газа и продуктов уплотнения, которые, оседая на стенках аппаратуры и трубопроводов, приводят к быстрому ее закоксованию.

Для увеличения выхода средних фракций и уменьшения коксоотложений весьма эффективны мероприятия, замедляющие реакции уплотнения, но не влияющие на скорость реакций разложения. К таким мероприятиям, относят:

- исключение рециркуляции средних дистиллятных фракций;

- подачи турбулизаторов для предотвращения коксоотложений в трубопроводах и аппаратуре;

- подаче водяного конденсата в среднюю часть реакционного змеевика печи;

- подачи атикоксообразовательных реагентов.

Использование водяного конденсата в качестве турбулизаторов препятствует коагуляции и уплотнению основных коксообразующих компонентов – асфальтенов, тем самым, снижая коксообразование и турбулизируя поток, препятствуют отложению продуктов уплотнения на стенках трубопроводов и аппаратуре.

 Основные регулируемые параметры висбрекинга – температура, давление, время пребывания сырья в зоне реакции. Увеличение любого из них приводит к ужесточению режима. Для достижения определенной жесткости режима данные параметры можно изменять в определенных диапазонах. При заданной жесткости, т.е. степени конверсии, или глубины превращения сырья, распределение выходов получаемых продуктов практически постоянны.

Увеличение выходов углеводородных газов и дистиллятов может быть достигнуто ужесточением режима висбрекинга, например, путем повышения температуры на выходе из печи. Ужесточение режима приведет также к сокращению расхода дистиллятов, добавляемых в котельное топливо для достижения его соответствия требованиям спецификации на готовый продукт.

Однако большая жесткость режима приводит и к крекированию тяжелых дистиллятов в более легкие компоненты, что нежелательно, так как эти дистилляты выполняют функцию растворителей асфальтовых составляющих. В случае крекирования дистилляты сепарируются, образуя коксовые отложения в трубах печи. Осуществление висбрекинга в таком режиме может привести к необходимости преждевременного ремонта установки; кроме того, существует вероятность получения нестабильного котельного топлива.(1,3)

Качественные показатели остатка висбрекинга различных фракций западносибирской нефти (фракции выкипающей выше 2000 С) представлены в таблице 1..(14)

Здесь же даны величины коэффициента снижения вязкости R, который равен отношению вязкости исходного продукта при температуре 800 С к вязкости остатка висбрекинга, определенной при этой температуре.

Температура кипения исходного сырья, 0 С

Содержание асфальтенов,

 % мас.

Вязкость сырья, ВУ80

Температура опыта и вязкость остатка висбрекинга

4500 С

4700 С

4900 С

5100 С

ВУ80 R ВУ80 R ВУ80 R ВУ80 R
400-490 490-540 >400 >540 Отс. Сл. 3,2 7,6 2,6 46,2 18,6 783 2,1 5,0 7,7 107 1,2 9,2 2,4 7,3  - 5,3  - 95,9  - 8,7  - 8,2 2,0 4,3 6,4  - 1,5 10 2,4  - 2,2  - 6,6 71,7 1,2  - 2,8 10

Таблица 1

Наибольшее снижение вязкости наблюдается при висбрекинге фракций, имеющих высокую исходную вязкость (фракции, выкипающие в пределах температур выше 4900 С), для которых коэффициент снижения вязкости 7-10. Как видно, повышение температуры более 450-4700 С не приводит к существенному снижению вязкости, но, как правило, вызывает ускорение закоксовывания технологического оборудования.

 Стабильность остатка висбрекинга как товарного продукта является основным критерием жесткости режима процесса. Неверно выбранная жёсткость, или степень конверсии, может привести к фазовому расслоению котельного топлива даже после его компаундирования.   Стабильность начинает уменьшаться, как только уровень жёсткости режима и, следовательно, конверсия переходят при увеличении определенную точку зависящую от характеристик сырья

Важным параметром процесса висбрекинга является давление. Давление, в особенности для сырья с пониженными температурами начала кипения, определяет как фазовое состояние реакционной системы, так и направление, и скорость реакций. Давление должно обеспечивать жидкое агрегатное состояние крекируемого сырья, так как крекинг в жидкой фазе обеспечивает наиболее высокие коэффициенты теплопередачи отсутствие механических перегревов ,минимальное коксообразование, возможность провести процесс в малогабаритных аппаратах, минимальный расход топлива и в конечном счёте эффективность процесса. Кроме того, повышение давление позволяет несколько увеличить производительность установки.(12)

 С повышением давления уменьшается выход газообразных продуктов распада и сокращается объём газовой фазы, причём плотность её растёт примерно пропорционально давлению. Влияние высокого давления проявляется в реакциях гидрирования : по мере увеличения давления от 0,2 до 5 МПа , доля непредельных в лёгких продуктах крекинга снижается в полтора – два раза, при этом увеличивается доля продуктов уплотнения.(22)

Типичным сырьем висбрекинга являются мазуты и гудроны. Степень конверсии этих остатков обычно составляет 10-15% в зависимости от их физико-химических характеристик и режима. Она служит критерием жесткости процесса и определяется как количество фракции >343оС мазута или фракции >482оС гудрона, превращаемой в более легкие компоненты.

Степень конверсии ограничивается рядом характеристик сырья: содержанием асфальтенов и натрия, коксуемостью по Конрадсону. Сырье с высоким содержанием асфальтенов характеризуется меньшей степенью конверсии, чем сырье с содержанием асфальтенов, не превышающим нормы, при одинаковом объеме производства стабильного котельного топлива. В присутствии натрия, а также при высокой коксуемости по Конрадсону коксообразование в трубах печи усиливается.

Изменения качества сырья влияют на степень его конверсии при заданной жесткости режима. Анализ данных, полученных при висбрекинге на пилотной установке различного сырья, показал, что для каждого конкретного сырья с увеличением жесткости режима вязкость фракции >204оС сначала уменьшается, а затем при достаточно жестком режиме резко увеличивается, что свидетельствует об образовании промежуточных коксообразующих соединений. Точка, в которой направление изменения вязкости меняется на обратное, для каждого сырья различна, но обычно совпадает с точкой выхода 20,2 - 23,6 м 3/ м 3 газа С1 – С6 в нормальных условиях. Считают, что после достижения этой точки котельное топливо становится нестабильным.

Между отдельными результатами пилотных испытаний установлена взаимосвязь. Точка, в которой меняется направление изменения вязкости, может быть предсказана и использована для определения расчетных параметров конкретного сырья при проектировании, чтобы избежать образования нестабильного котельного топлива и добиться максимальной конверсии сырья.

В промышленности используют две технологии висбрекинга:

- проведение реакции в печном змеевике;

- проведение реакции в реакционной камере.

Нефтяные остатки после нагрева в печи до высокой температуры поступают при заданном давлении в сокинговую (реакционную) зону, находящуюся либо в печи, либо во внешнем аппарате. Выходящий из этой зоны поток быстро охлаждается для прекращения реакции с помощью особого технологического приема – квенчинга.

При печном варианте висбрекинга конструкция печи должна обеспечивать оптимальное время пребывания сырья в реакционной зоне для достижения нужного образования продуктов реакции и минимизацию коксовых отложений.

Процесс в реакционной камере происходит при более низкой температуре с более длительным временем нахождения, чем в реакционном змеевике. Схема с камерой позволяет понизить температуру после печи, уменьшить ее тепловую нагрузку, однако приводит к установке сложного аппарата значительного объема, к периодической выгрузке из него кокса, что может повлиять на длительность пробега установки. При этом следует иметь ввиду, что существенного отличия в выходах фракций не ожидается.

Змеевиковый (печной) висбрекинг

предлагают фирмы «Foster Wheeler Co.» и «UOP». В этом случае высокотемпературный крекинг осуществляется в специальном реакционном змеевике печи. Поскольку степень конверсии сырья в первую очередь зависит от его температуры и времени пребывания в зоне реакции, змеевиковый висбрекинг можно определить как высокотемпературный кратковременный процесс. Фирма «Foster Wheeler» успешно спроектировала большое число печей данного типа для НПЗ в разных странах мира.(9)

Основное преимущество змеевиковой печи — наличие двух зон нагрева. Такая конструкция обеспечивает: большую гибкость подвода тепла, что позволяет лучше регулировать температуру нагрева сырья: легкость удаления кокса из труб печи паровоздушным способом; получение стабильного котельного топлива, что особенно важно для нефтеперерабатывающих заводов с ограниченными возможностями смешивания топлив.

Схема базовой установки висбрекинга гудрона показана на рис.1.4.1.

 

 

 

 


Рис.1.4.1 Схема базовой установки висбрекинга : 1-печь; 2-фракционнирующая колонна; 3-воздушный холодильник-конденсатор; 4-колонна отпарки газойля;

5-сепаратор; 6-воздушный холодильник; 7-узел нагрева и выработки пара.

1-сырьё; 2-водяной пар; 3-углеводородный газ; 4-кислая вода; 5-нестабильная бензиновая фракция; 6-газойлевая фракция; 7-котельное топливо.

 

Висбрекинг с сокинг-камерой.

В альтернативном процессе конверсия частично происходит в печи. Однако, основная ее доля приходится на сокинг-камеру, где двухфазный поток из печи выдерживается при повышенной температуре в течение за­данного времени. Сокерный висбрекинг определяется как низкотемпературный процесс с длительным пребыванием сырья в зоне реакции. Лицензиаром этого процесса является фирма «Shell». Ряд проектов установок висбрекинга сокерного типа выполнила и фирма «Foster Wheeler».

Реакционная камера, обеспечивая необходимое время пребывания сырья, позволяет работать с потоком более низкой температуры на выходе из печи и тем самым экономить печное топливо. Несмотря на очевидные экономические преимущества, этот процесс имеет ряд недостатков, основной из которых — сложность очистки печи и сокерной камеры от кокса. Эта очистка проводится реже, чем на установке со змеевиковой печью, однако для нее требуется более сложное оборудование.

Схема установки висбрекинга гудрона с выносной реакционной камерой показана на рис.1.4.2.


 

 


Рис.1.4.2. Схема базовой установки висбрекинга с сокинг - камерой : 1-печь; 2-фракционнирующая колонна; 3-воздушный холодильник-конденсатор; 4-колонна отпарки газойля;5-сепаратор; 6-воздушный холодильник; 7-узел нагрева и выработки пара; 8-сокинг-камера.

1-сырьё; 2-водяной пар; 3-углеводородный газ; 4-кислая вода; 5-нестабильная бензиновая фракция; 6-газойлевая фракция; 7-котельное топливо.

 

Обычно кокс из сокера удаляют путем резки водой под высоким давлением. В результате образуется значительное количество воды, загрязненной частицами кокса, которую необходимо удалять, фильтровать и возвращать для повторного использования. В отличие от установок замедленного коксования (УЗК.) установки висбрекинга обычно не оснащены оборудованием для резки кокса и очистки загрязненной воды. Затраты на это оборудование на установке висбрекинга экономически не оправданы,

Качество и выходы продуктов на установках обоих типов при одинаковой жесткости режима в целом одинаковы и не зависят от конфигурации установки.(9)

Россия, на пороге XXI века, несмотря на спад производства, остается достаточно крупным мировым экспортером добываемых нефтей и потенциально мощным производителем нефтепродуктов на базе их переработки. В производственном потенциале мировой нефтепереработке Россия продолжает занимать достойное второе место в мире после США. Однако, по объему реальной переработки нефти российская нефтеперерабатывающая промышленность переместилась за последние годы на четвертое место, уступив второе место - Японии и третье – Китаю.

Переработка нефтяного сырья на российских НПЗ осуществляется с недостаточной загрузкой мощностей производственного потенциала и с низкой (относительно мировой) степенью конверсии мазута. Целевые нефтепродукты – автобензины, дизельные топлива, топочные мазуты, смазочные масла – по эксплуатационным и экологическим свойствам уступают в серийном производстве мировому уровню.

Решением выше изложенной проблемы, суперприоритетным направлением, является развитие российской нефтеперерабатывающей промышленности по углублению переработки нефтяного сырья. Основными базовыми процессами деструктивной переработки мазута выступают процессы каталитического крекинга и гидрокрекинга, которые требуют оснащения оборудованием целых комплексов, дополнительных процессов и установок. ОАО “Саратовский НПЗ ” не в состоянии инвестировать такие дорогостоящие комплексы со сроками окупаемости до двух-трех лет.

В связи с этим наиболее приоритетным направлением является создание современной технологической схемы производства с небольшими материальными и энергетическими затратами и коротким сроком окупаемости.

Одним из эффективных и гибких вторичных процессов переработки мазутов и гудронов является висбрекинг, отличительной особенностью которого, по сравнению с другими процессами переработки нефти и нефтепродуктов, являются низкие капитальные и энергетические затраты. Висбрекинг, при относительной простоте технологического и аппаратурного оформления, позволяет вырабатывать из нефтяных остатков котельные топлива требуемого качества без разбавления легкими топливными фракциями, перерабатывать остаточные фракции в дистиллятные, получать дополнительно некоторое количество средних и легких фракций.

Процесс висбрекинга – это разложение тяжелых остатков нефтепереработки при умеренной (470-490оС) температуре и давлении(5-20 кгс/см2).

Решение о включении висбрекинга в схему НПЗ принимается обычно исходя из следующих задач:

- уменьшения вязкости остаточных потоков с целью сокращения расхода высококачественных дистиллятов, добавляемых в котельное топливо для доведения его вязкости до требования спецификаций на готовый продукт;

- необходимости переработки части остатков в дистилляты, в частности в вакуумный газойль - сырье крекинга;

- углубление переработки нефти.

Основная цель строительства секции висбрекинга гудрона на ОАО «Саратовский НПЗ» - углубление переработки нефти на заводе. Ввод в эксплуатацию установки висбрекинга гудрона увеличит глубину переработки нефти с 51,4% до 73,7%.

Существует две схемы проведения процесса висбрекинга:

- проведение реакции висбрекинга в печном змеевике;

- проведение реакции висбрекинга в реакционной камере.

Типичным сырьем висбрекинга являются мазуты и гудроны. Степень конверсии этих остатков обычно составляет 10-15% в зависимости от их физико-химических характеристик и режима. На «Саратовском НПЗ» в качестве сырья используется гудрон - остаточный продукт вакуумной колонны установки ЭЛОУ-АВТ-6.Годовое производство гудрона составляет 1 млн.тонн.

Продуктами висбрекинга являются: топливный газ, бензиновая фракция и мазут топочный М-100.

Продукты установки висбрекинга используются:

- газ углеводородный (топливный) после очистки от сероводорода раствором амина используется в качестве топлива на установке и других объектах завода;

- бензиновая фракция после очистки используется в качестве компонента при приготовлении бензина А-80;

- топочный мазут М-100 используется в качестве жидкого топлива на электростанциях, ТЭЦ, и т.д.:

- рынок бензина А-80 и мазута практически неограничен.

Одной из главных задач на Саратовском нефтеперерабатывающем заводе является рациональное использование природных и энергетических ресурсов, а также материалов, реагентов, полуфабрикатов и готовой продукции необходимых для ведения технологического процесса.

В ходе изучения технологической схемы и потоков нефтепродуктов на установке висбрекинг было выявлено не рациональное использование регенерации тепла циркуляционного орошения (лёгкого газойля, фракция 350-420°С) колонны К-101.В целях экономии энергоресурсов было предложено:

1. Установка висбрекинга гудрона предназначена для получения из гудрона компонента котельного топлива и светлых нефтепродуктов.

2. Процесс висбрекинга - умеренный термический крекинг тяжелых нефтяных остатков с целью снижения их вязкости.

Сырье секции висбрекинга – гудрон, получаемый на блоке вакуумной перегонки мазута установки ЭЛОУ-АВТ-6 при переработке смеси нефтей, поступающих на Саратовский нефтеперерабатывающий завод.

Целевым продуктом является остаток висбрекинга – компонент котельного топлива.

Кроме целевого продукта с установки выводятся:

- очищенный углеводородный газ;

- стабильный бензин (фракция НК-195 оС);

- легкий газойль висбрекинга;

3. Секция висбрекинга состоит из следующих технологических стадий (блоков и узлов):

-узел висбрекинга гудрона, включающий трубчатую печь и ректификационную колонну для разделения продуктов крекинга;

-блок физической стабилизации бензиновой фракции;

-блок очистки газов висбрекинга от сероводорода 15%-ным раствором моноэтаноламина (МЭА);

-узел утилизации тепла.

 4. Технология процесса висбрекинга разработана научно-производственной фирмой ПАУФ. Генеральный проектировщик - ГУП “БАШГИПРОНЕФТЕХИМ” г. УФА.

Производительность установки - переработка 800 тыс. т. гудрона в год.

Число часов работы установки в году – 8400 (350 суток).

Год ввода установки в эксплуатацию – 2004 г.

 









Сырьевой резервуар Р-101

              1.1.

Температура

TI 130 оС 110 – 120 1,0 К калибровка     1.2.

Уровень

LIСA 406, LSA 404 %шкалы 45 – 55 1,5 И индикатор     2.

Емкость Е-119

              2.1.

Температура

TI 155 оС 300 – 320 1,0 К калибровка     2.2.

Уровень

LSA 407-1,2, LIСA 408 %шкалы 20 – 80 1,5 И индикатор     3.

Печь П-104

              3.1.

Расход сырья по каждому из 2-х потоков

FICA 320, FICA 321 т/час 50 – 80 1,5 И индикатор     3.2.

Давление сырья на входе в печь по каждому из 2-х потоков

PIA 254, PISA 256 PIA 255, PISA 257 Кгс/см2 18 – 29 1,5 К калибровка     3.3.

Расход разбавителя (тяжелого газойля) в поток сырья

FIC 339 10 % на сырье 1,5 И индикатор     3.4.

Температура на выходе каждого потока

TСA 162, TIСA 163 оС 475 – 485 1,0 К калибровка     3.5.

Давление топливного газа к пилотным горелкам

PISA 264, PIA 263 Кгс/см2 0,2 – 0,6 1,5 К калибровка     3.6.

Давление топливного газа к основным горелкам

PISA 267, PIA 266 Кгс/см2 0,006 – 0,03 1,5 К калибровка     3.7.

Давление жидкого топлива к форсункам печи

PISA 269, PIA 268 Кгс/см2 1,5 – 5,8 1,5 К калибровка     3.8. Расход турбулизатора (пар, легкий газойль висбрекинга) в 1-й и 2-ой потоки -в конвекционной части змеевика -в радиантной части змеевика (2 ввода)

FIC 380-1,2

FIC 381-1,2

FIC 382-1,2

FIC 383-1,2

FIC 384-1,2

FIC 385-1,2

л/час   50 – 100   100 - 200 1,5 И индикатор     3.9. Температура перегретого пара на выходе из печи

TIA 1104

оС 350 – 400 1,0 К калибровка     3.10. Температура дымовых газов на перевале печи

TICA 168a, TICA 169a

TISA 168б, TISA 169б

оС   Не выше 800 1,0 К калибровка     4. Емкость топливного газа Е-109

 

            4.1. Давление

PI 251

Кгс/см2 Не выше 3,0 1,5 К калибровка     4.2. Уровень

LISA 409

%шкалы 10 – 90 1,5 И индикатор     5. Ректификационная колонна К-101

 

            5.1. Температура на входе в колонну

TICA 164

оС 410 – 420 1,0 К калибровка     5.2. Температура верха

TIC 170

оС Не выше 200 1,0 К калибровка     5.3. Температура низа

TIC 174

оС Не выше 400 1,0 К калибровка     5.4. Давление

PIA 278, PISA 279

Кгс/см2 4,5 – 4,8 1,5 ГБ госповерка     5.5. Уровень верхнего аккумулятора

LISA 413, LICA 412

% шкалы 20 – 80 1,5 И индикатор     5.6. Уровень нижнего аккумулятора

LISA 415, LICА 414

% шкалы 20 – 80 1,5 И индикатор     5.7. Уровень низа колонны

LISA 416, LICА 417

% шкалы 45 – 55 1,5 И индикатор     6. Отпарная колонна К-102

 

            6.1. Температура верха

TI 175

оС Не более 200 1,0 К калибровка     6.2. Давление

PI 281

Кгс/см2 4,5 – 4,8 1,5 ГБ госповерка     6.3. Уровень

LICA 418, LISА 419

% шкалы 45 – 55 1,5 И индикатор     7. Емкость Е-101

 

            7.1. Температура

TI 186

оС Не выше 40 1,0 К калибровка     7.2. Давление

PIC 291, PI 290

Кгс/см2 Не более 4,5 1,5 К калибровка     7.3. Уровень бензина

LICA 421, LISA 423

% шкалы 45 – 55 1,5 И индикатор     7.4. Уровень воды

LdICA 422

% шкалы 45 – 55 1,5 И индикатор     8. Колонна К-103

 

            8.1. Температура верха

TIC 199

оС Не выше 90 1,0 К калибровка     8.2. Давление

PIA 298

Кгс/см2 9,0 – 9,5 1,5 ГБ госповерка     8.3. Температура низа

TIA 1001

оС 200 – 210 1,0 К калибровка     8.5. Уровень в Т-110

LIСA 427

% шкалы 45 – 55 1,5 И индикатор     9. Емкость Е-102

 

            9.1. Уровень

LICA 424, LSA 425

% шкалы 45 – 55 1,5 И индикатор     10. Емкость Е-103

 

            10.1. Температура

TI 1005

оС Не выше 45 1,0 К калибровка     10.2. Давление

PIC 2000

Кгс/см2 Не более 9,0 1,5 К калибровка     10.3. Уровень сжиженного газа

LICA 428, LSA 430

% шкалы 45 – 55 1,5 И индикатор     10.4. Уровень воды

LICA 429

% шкалы 45 – 55 1,5 И индикатор     11. Емкость Е-111

 

            11.1. Температура

TIA 1057

оС 20 – 75 1,0 К калибровка     11.2. Уровень

LIA 462

% шкалы 20 – 90 1,5 И индикатор     12. Колонна К-104

 

            12.1. Температура

TI 1019

оС 40 – 50 1,0 К калибровка     12.2. Давление

PIC 2008, PIС 2009

Кгс/см2 Не выше 3,0 1,5 ГБ госповерка     12.3. Уровень

LICA 434, LSA 437

% шкалы 45 – 55 1,5 И индикатор     13. Емкость Е-105

 

            13.1. Температура

TI 1022, TI 1023

оС 40 – 50 1,0 К калибровка     13.2. Давление

PI 2018

Кгс/см2 Не выше 3,0 1,5 К калибровка     13.3. Уровень насыщенного раствора МЭА

LSA 442, LICА 441

% шкалы 45 – 55 1,5 И индикатор     13.4. Уровень углеводородов

LIA 439

% шкалы 45 – 55 1,5 И индикатор     14. Емкость Е-104

 

            14.1. Уровень

LICА 446, LSA 447

% шкалы 45 – 55 1,5 И индикатор     15. Колонна К-105

 

            15.1. Давление

PI 2040

Кгс/см2 Не более 1,6 1,5 К калибровка     15.2. Температура верха

TI 1039

оС Не выше 115 1,0 К калибровка  

15.3.

Температура низа

TIC 1038

оС Не выше 125 1,0 К калибровка  

16.

Колонна К-106

 

       

16.1.

Температура верха

TI 1073

оС Не выше 120 1,0 К калибровка  

16.2.

Температура низа

TIC 1075

оС Не выше 125 1,0 К калибровка  

16.3.

Давление

 

Кгс/см2 Не более 1,1 1,5 К калибровка  

16.4.

Уровень

LICA 481

% шкалы 45 – 55 1,5 И индикатор  

17.

Дренажная емкость Е-111

 

         

17.1.

Температура

TIA 1057

оС 20 – 75 1,0 К калибровка  

17.2.

Уровень

LISA 462

% шкалы 20 – 90 1,5 И индикатор  

18.

Емкость Е-114

 

         

18.1.

Уровень углеводородов

LISA 477

% шкалы 10 – 60 1,5 И индикатор  

18.2.

Уровень водяного конденсата

LISA 479

% шкалы 10 – 75 1,5 И индикатор  

19.

Приготовление агидола - емкость Е-115/1,2

 

         

19.1.

Уровень

LIA 464, LSA 468

LIA 465, LSA 469

% шкалы 10 – 80 1,5 И индикатор  

20.

Приготовление ИКБ-2-2 - емкость Е-116/1,2

 

         

20.1.

Уровень

LIA 466, LSA 470

LIA 467, LSA 471

% шкалы 10 – 80 1,5 И индикатор  

21.

Емкость раствора МЭА Е-108/1

 

         

21.1.

Температура

TIA 1027

оС 30 – 75 1,0 К калибровка  

21.2.

Уровень

LISA 449

% шкалы 20 – 90 1,5 И индикатор  

22.

Емкость Е-108/1,2

 

         

22.1.

Температура

TIA 1041

оС 30 – 75 1,0 К калибровка  

22.2.

уровень

LISA 451

% шкалы 20 – 90 1,5 И индикатор  

23.

Емкость химочищенной воды Е-201

 

       

23.1.

Уровень

LIA 4000

% шкалы 20 – 90 1,5 И индикатор  

24.

Деаэратор Е-202

 

       

24.1.

Давление

PIA 2146

Кгс/см2 Не более 0,2 1,5 К калибровка  

24.2.

Уровень

LIA 4003

% шкалы 65 – 95 1,5 И индикатор  

25.

Емкость Е-204

 

         

25.1.

Уровень

LIA 4010

% шкалы 10 – 90 1,5 И индикатор  

26.

Емкость Е-205

 

         

26.1.

Уровень воды

LIA 4002

% шкалы 10 – 15 1,5 И индикатор  

27.

Воздухоподогреватели ВП-201/1,2

 

         

27.1.

Температура воздуха после ВП-201/1,2

TIA 1123,1124

оС 120 – 180 1,0 К калибровка  

27.2.

Температура воды после ВП-201/1,2

TIA 1125,1126

оС 50 – 150 1,0 К калибровка                      

 



УЗЕЛ ВИСБРЕКИНГА ГУДРОНА

1 Основная ректификационная колонна К-101 1 09Г2С+ 08Х13   Диаметр - 1800/2400 мм; Высота - 34635 мм; Объем -107 м3; Давление расчетное - 0,82 МПа (8,2 кгс/см2); Температура расчетная - 420 оС; Контактные устройства: каскадные - 5 шт.; трапециевидно - клапанные тарелки - 30 шт. 2 Отпарная колонна К-102 1 09Г2С - 17 08Х13   Диаметр - 800 мм; Высота - 10035 мм; Объем - 4,6 м3; Давление расчетное - 0,84 МПа (8,4 кгс/см2); Температура расчетная - 320 оС; Контактные устройства - перекрестноточные насадочные модули - 8 шт. 3   Стабилизатор бензина К-103 1 09Г2С - 17+ 08Х13   Диаметр - 1200 мм; Высота - 30700 мм; Объем - 31,7 м3; Давление расчетное - 1,26 МПа (12,6 кгс/см2); Температура расчетная - 250 оС; Контактные устройства - перекрестноточные насадочные модули - 40 шт. 4 Флегмовая емкость колонны К - 101 Е-101 1 16ГС - 12 Диаметр - 2000 мм; Длина - 5497 мм; Объем - 16,1 м3; Давление расчетное 0,76 МПа (7,6 кгс/см2); Температура расчетная - 313 оС; Среда - бензин, техн. конденсат, у/в газ; Подогреватель: Давление расчетное - 1,0 МПа (10 кгс/см2); Температура расчетная 100 оС; Среда - теплофикационная вода. 5   Флегмовая емкость стабилизатора бензина Е-103 1 09Г2С - 12 Диаметр - 1200 мм; Длина - 4067 мм; Объем - 4 м3; Давление расчетное - 1,26 МПа (12,6 кгс/см2); Температура расчетная - 100 оС; Среда - углеводородный газ, сжиженный газ, технологический конденсат; Подогреватель: Давление расчетное - 1,0 МПа (10 кгс/см2); Температура расчетная 150 оС; Среда - вода теплофикационная. 6 Емкость горячего гудрона Е-119 1 09Г2С - 12 16ГС - 12 Диаметр - 2400 мм; Высота - 14492 мм; Объем - 50 м3 Давление расчетное - 0,42 МПа (4,2 кгс/см2); Температура расчетная - 340 оС; Среда: гудрон, пары у/в С1 - С6. 7 Буферный резервуар гудрона Р-101 1 Ст. углер. Диаметр - 7580 мм; Высота - 7450 мм; Объем - 300 м3 Внутреннее избыточное давление - от 200 до 230 мм вод. ст. вакуум 25 мм вод. ст.; Температура хранения - 120 оС. 8 Печь висбрекинга П-104 1 Труба Х9М, 15Х5М. Полезная тепловая мощность: для гудрона - 19,5 Гкал/ч; для водяного пара - 0,15 Гкал/ час. Расчетное давление змеевика: для гудрона - 4,0 МПа (40 кгс/см2); для водяного пара - 1,6 МПа (16 кгс/см2). Расчетная температура стенки труб: для гудрона - 590 0С; для водяного пара - 465 0С. Поверхность труб, м2 /число труб: в камере конвекции - 499,2/64; в камере радиации - 698,2/84; для водяного пара - 1,0/2. Размер труб змеевика, мм: в радиантный камере - 127´10; в камере конвекции - 127´10; в камере конвекции - 152´11  - для водяного пара - 89´6 Тип горелочных устройств - ГП-2,5 Д1; Топливо - газ/ мазут. 9 Теплообменник «сырье - гудрон - остаток висбрекинга из Т-101» Т-100,101 1 сдвоен. Кожух 09Г2С 09Г2С - 12 Трубки Сталь 20 1000ТПГ - 4,0 - М1 У И  25Г - 6 - К - 4 по ТУ 3612 - 023 - 00220302 - 01 Поверхность теплообмена - 537,8´2 м2. Трубное пространство: Давление расчетное - 3,5 МПа (35 кгс/см2); Температура расчетная - 300 0С; Среда: остаток висбрекинга. Межтрубное пространство: Давление расчетное - 3,72 МПа (37,2 кгс/см2); Температура расчетная - 200 0С; Среда: сырье - гудрон.   10 Теплообменник «сырье - гудрон - остаток висбрекинга из Т-104» Т-102,103 1 сдвоен. Кожух 09Г2С 09Г2С - 12 Трубки Сталь 20 1000ТПГ - 4,0 - М1 У И  25Г 6 - К - 4 по ТУ 3612 - 023 - 00220302 - 01 Поверхность теплообмена – 537,8´2 м2 Трубное пространство: Давление расчетное - 2,6 МПа (26 кгс/см2); Температура расчетная - 350 0С; Среда: остаток висбрекинга. Межтрубное пространство: Давление расчетное - 3,5 МПа (35 кгс/см2); Температура расчетная - 300 0С; Среда: сырье - гудрон. 11 Теплообменник «сырье - гудрон - остаток висбрекинга из Т-105» Т-104,105 1 сдвоен. Кожух 09Г2С 09Г2С - 12 Трубки Сталь 20 1000ТПГ - 4,0 - М1 У И  25Г 6 - К - 4 по ТУ 3612 - 023 - 00220302 - 01 Поверхность теплообмена – 537,8´2 м2 Трубное пространство: Давление расчетное - 2,6 МПа (26 кгс/см2); Температура расчетная - 350 0С; Среда: остаток висбрекинга. Межтрубное пространство: Давление расчетное - 3,0 МПа (30 кгс/см2); Температура расчетная - 300 0С; Среда: сырье - гудрон.   12   Теплообменник «сырье - гудрон - остаток висбрекинга из К-101» Т-106,107 1 сдвоен. Кожух 09Г2С 09Г2С - 12 Трубки Сталь 20 1000ТПГ - 4,0 - М1 У И  25Г 6 - К - 4 по ТУ 3612 - 023 - 00220302 - 01 Поверхность теплообмена – 537,8´2 м2 Трубное пространство: Давление расчетное - 2,3 МПа (23 кгс/см2); Температура расчетная - 400 0С; Среда: остаток висбрекинга. Межтрубное пространство: Давление расчетное - 2,6 МПа (26 кгс/см2); Температура расчетная - 350 0С; Среда: сырье - гудрон. 13 Кипятильник стабилизатора бензина К-103 Т-110 1 09Г2С - 14 09Г2С - 15 Трубки Сталь 20 1000ИУ - 1,6 - 2,5 - М1 У И  20 6 - 2 по ТУ 3612 - 013 - 00220302 - 99 Поверхность теплообмена - 120 м2 Трубное пространство: Давление расчетное - 1,9 МПа (19 кгс/см2); Температура расчетная 300 0С; Среда: легкий газойль. Межтрубное пространство: Давление расчетное - 1,4 МПа (14 кгс/см2); Температура расчетная - 250 0С; Среда: стабильный бензин. 14 Доохладитель паров колонны К-101 Х-101 1 Кожух Ст3 сп5 Трубки  08Х18Н10Т 600КНГ-0,6 -1,6-М12-У-И  25Г - 6 - 4 по ТУ 3612 - 024 - 00220302 - 02 Поверхность теплообмена - 95,62 м2 Трубное пространство: Давление расчетное - 0,6 МПа (6 кгс/см2); Температура расчетная - 100 0С; Среда: вода оборотная. Межтрубное пространство: Давление расчетное - 1,6 МПа (16 кгс/см2); Температура расчетная - 100 0С; Среда: углеводороды С1 - С4 ,бензин, технологический конденсат, Н2S. 15 Конденсатор паров колонны К-103 Х-103 1 Кожух 09Г2С - 12 09Г2С - 14 Трубки  08Х18Н10Т 600КНГ-0,6-1,6-М12-У- И  25Г - 6 - 6 по ТУ 3612 - 024 - 00220302 - 02 Поверхность теплообмена - 90,9 м2 Трубное пространство: Давление расчетное - 0,6 МПа (6кгс/см2); Температура расчетная - 60 0С; Среда: вода оборотная. Межтрубное пространство: Давление расчетное - 1,6 МПа (16 кгс/см2); Температура расчетная - 100 0С; Среда: углеводороды С2 - С4, Н2 S. 16 Насос нефтяной центробежный для подачи сырья - гудрона Н-101/1,2 2 Сталь 25Л - 11 ТКА 32/ 125 - аС60 УТДХ 2 У2 Производительность - 15 - 40 м3/ч; Напор - 120-130 м ст. ж.; Среда: сырье - гудрон. Электродвигатель - ВА-200М-2 Исполнение - IExdIIBT4; Мощность - 37 кВт; Число оборотов - 2950 об/мин; Напряжение - 380 в. 17 Насос нефтяной центробежный для откачки остатка висбрекинга  из К-101 Н-102/1,2 2 Хромистая сталь по стандар - ту API С6 HZZ - 102 - 321 Производительность - 134 м3/ч; Напор - 200 м ст. ж.; Среда: остаток висбрекинга. Электродвигатель - M3JP315SMB2 Исполнение - Eexde IIBT4; Мощность - 132 кВт; Число оборотов - 2950 об/мин; Напряжение - 380 в.   18 Насос нефтяной центробежный для подачи острого орошения в К-101 и откачки бензиновой фракции Н-103/1,2 2 Сталь 25 Л - 11 ТКА 63/ 125 БС УСГ У2 Производительность - 40 м3/ч; Напор - 119 м ст. ж.; Среда: нестабильный бензин. Электродвигатель - ВА-180М 2 Исполнение - IExdIIBT4; Мощность - 30 кВт; Число оборотов - 2950 об/мин; Напряжение - 380 в. 19 Насос нефтяной центробежный циркуляционного орошения К-101 Н-105/1,2 2 Сталь 25Л - 11 ТКА 210/ 80 - аС60 УТДХ 2 У2 Производительность - 164,5 м3/ч; Напор - 90 м ст. ж.; Среда: легкий газойль. Электродвигатель - В-255М-2 Исполнение - IExdIIBT4; Мощность - 55 кВт; Число оборотов - 2950 об/мин; Напряжение - 380 в. 20 Насос нефтяной центробежный подачи тяжелого газойля висбрекинга в К-101 и в сырье Н-108/1,2 2 APIC6 GSG50 - 220/7 Производительность – 37 м3/ч; Напор - 470 м ст. ж.; Среда: тяжелый газойль.  Электродвигатель - M3JP280SMA2 Исполнение - ЕExdIIBT4; Мощность - 75 кВт; Число оборотов - 2975 об/мин; Напряжение - 380 в. 21 Шестиголовочный мембранный дозировочный насос для подачи турбулизатора в змеевики П-104 Н-122/ 1,2 2 Головки 1.4571 (А316Тi) мембраны РТFE Мf6s - 80/51 Производительность каждой головки - 0-300 л/ч; Давление нагнетания - 4,0 МПа (40 кгс/см2); Среда: химочищенная вода. Электродвигатель - LOHEP, Исполнение - ЕExdеIIСT4;Мощность - 4 кВт; Число оборотов - 1420 об/мин; Напряжение - 380 в. 22 Насос подачи сырья - гудрона в печь П-104 Н-128/ 1,2 2 Хромистая сталь GSG 80 - 260/ 6 Производительность - 129 м3/ч; Напор - 440 м ст. ж.; Среда: сырье - гудрон Электродвигатель - КД2375Х Исполнение - IExdIIBT4; Мощность - 250 кВт; Число оборотов - 2950 об/мин; Напряжение - 6000 в.

УЗЕЛ УТИЛИЗАЦИИ ТЕПЛА

23 Деаэратор Е-202 1 16ГС - 12 ДА - 15 - деаэраторный бак. Диаметр - 1200 мм; Длина - 4450 мм; Объем - 4 м3; Давление - 0,02 МПа (0,2 кгс/см2); Температура – 104 0С. КДА-15 - деаэрационная колонка. Диаметр - 530 мм; Высота - 1897 мм; Объем - 4 м3; Давление - 0,02 МПа (0,2 кгс/см2); Температура – 104 0С. 24   Отделитель воды Е-204 1 Ст3 сп5 Диаметр - 2400 мм; Длина - 10230 мм; Объем - 40 м3; Давление расчетное - 1,6 МПа (16 кгс/см2) Температура расчетная - 200 оС; Среда - водяной пар. 25 Теплообменник «циркуляционное орошение К - 101 - вода циркуляционного контура» Т-205/1,2 Т-206,208/1,2 2 сдвоен. Корпус Ст3 сп5 Труба Сталь20 600ТНГ-2,5-М1/25г-6-У-И по ТУ 3612 - 024 - 00220302 - 02 Поверхность теплообмена - 124,8´2 м2 Трубное пространство: Давление расчетное - 1,9 МПа (19 кгс/см2); Температура расчетная - 300 0С; Среда: циркуляционное орошение К-101. Межтрубное пространство: Давление расчетное - 2,32 МПа (23,2 кгс/см2); Температура расчетная - 200 0С; Среда: вода циркуляционного контура.

 

Технологические расчеты

РАЗДЕЛ «КИПиА»

 

Непрерывный контроль за ходом ведения технологического процесса осуществляет система сигнализаций и блокировок. Она обеспечивает:

- подачу предупредительного светового и звукового сигнала при выходе контролируемого ей технологического параметра за границу допустимых (минимальных и максимальных) значений;

- аварийную остановку защищаемого оборудования при достижении предельно минимальных и предельно максимальных значений контролируемого системой параметра.

Система сигнализаций и блокировок смонтирована независимо от системы регулирования технологических параметров.

Световая сигнализация отображается на мнемосхеме при достижении минимального или максимального значения технологического параметра срабатывает звуковая сигнализация, и на мнемосхеме мигает соответствующий световой сигнал. При этом оператор обязан:

- определить параметр, вышедший за допустимые пределы;

- отключить нажатием кнопки звуковой сигнал, световой сигнал при этом продолжает гореть постоянным светом;

- определить причину выхода параметра за допустимые пределы и устранить ее;

- восстановить рабочее значение параметра, убедиться в том, что световой сигнал погас.

При достижении предельно максимальных или предельно минимальных значений технологических параметров система ПАЗ (противоаварийной защиты оборудования) обеспечивает отключение соответствующих технологических потоков. Для отключения потоков на секций предусмотрены электрозадвижки (э/з) и запорные клапаны (ЗК).

Состояние запорных клапанов и электрозадвижек («открыто» и «закрыто») отображается на мнемосхеме.

 5.2.1. Перечень технологических сигнализаций и управлений

в информационно-управляющей подсистеме (ИУП)

Электроснабжение секции висбрекинга

Электроэнергия:

1. Ввод на секцию висбрекинга:

     напряжение – 6000 в 50гц

 – 380 в 50 гц

2. Ввод в операторную – 220 в 50 гц

Электроснабжение узла регенерации МЭА

Электроэнергия:

1. Ввод на секцию висбрекинга:

напряжение – 6000 в 50гц

 – 380 в 50 гц

2. Ввод в операторную – 220 в 50 гц

 

КРАТКАЯ ХАРАКТЕРИСТИКА РЕГУЛИРУЮЩИХ КЛАПАНОВ.

 

Таблица 8.

№ п/п № позиции клапана на схеме Место установки клапана Назначение клапана Тип клапана Обоснование выбора клапана
1 2 3 4 5 6

Секция висбрекинга

1 TV172 Трубопровод легкого газойля из К -101 в К -102 Регулирование температуры на 21 тарелке К - 101 НО Исключается ухудшение качества легкого газойля  
2 TV1002 Трубопровод циркуляционного орошения в Т -205 Регулирование температуры паров из Т-103 НО Исключается снижение температуры в кубе К -103
3 TV1146 Байпас Т - 206 Регулирование температуры циркуляционного орошения НО Исключается снижение температуры циркуляционного орошения
4 РV252 - 1 Трубопровод топливного газа в Е - 119 Регулирование давления в Е - 119 НО Исключается понижение давления в Е - 119
5 РV274 Трубопровод квенчинга от Т - 100 в линию продуктов висбрекинга на выходе из П -104 Регулирование давления квенчинга НО Стабилизация подачи квенчинга
6 РV275 Трубопровод топливного газа к пилотным горелкам Регулирование давления топливного газа к пилотным горелкам НЗ Исключается нарушение режима горения пилотных горелок
7 РV291 Трубопровод углеводородного газа из Е - 101 Регулирование давления в Е - 101 НО Стабилизация давления в К -101
8 РV2000 Трубопровод углеводородного газа из Е – 103 Регулирование давления в Е - 103 НО Исключается нарушение режима в Е - 103
9 РV2008 Трубопровод углеводородного газа из К -104 в топливную сеть Регулирование давления в К -104 НО Исключается нарушение режима в К - 104
10 РV2133 Паропровод из Е - 204 Регулирование давления водяного пара НО Исключается нарушение режима
11 РV2135 Паропровод в Е - 202 из сети Регулирование давления водяного пара в трубопроводе в Е -202 НО Исключается нарушение режима
12 FV318 Трубопровод гудрона в Т -100 Регулирование расхода гудрона в  Т - 100 НЗ Исключается нарушение режима
13 FV319 Торубопровод нагнетания насоса Н - 101/ 1,2 Регулирование расхода сырья - гудрона от Н - 101/1,2 в общую линию прямого питания НО Стабилизация загрузки секции
14 FV320 Трубопровод гудрона в П - 104 (правый поток) Регулирование расхода сырья - гудрона в П - 104 (правый поток) НО Исключение нарушения работы правого змеевика печи П -104
15 FV321 Трубопровод гудрона в П - 104 (левый поток) Регулирование расхода сырья - гудрона в П - 104 (левый поток) НО Исключение нарушения работы левого змеевика печи П -104
16 FV322 Трубопровод квенчинга в поток продуктов висбрекинга из П - 104 Регулирование общего расхода квенчинга НО Исключение закоксовывания трубопровода от П - 104 до К - 101
17 FV323 Трубопровод квенчинга в левый поток продуктов висбрекинга из П - 104 Регулирование расхода квенчинга в левый поток продуктов висбрекинга из П - 104 НО Равномерное распределение квенчинга в левый и правый потоки продуктов висбрекинга и П - 104
18 FV324 Трубопровод квенчинга в правый поток продуктов висбрекинга из П - 104 Регулирование расхода квенчинга в правый поток продуктов висбрекинга из П - 104 НО Равномерное распределение квенчинга в левый и правый потоки продуктов висбрекинга и П - 104
19 FV330 Трубопровод циркуляционного орошения в К - 101 Регулирование расхода циркуляционного орошения в К - 101 НО Стабилизация режима колонны К - 101
20 FV331 Трубопровод тяжелого газойля на промывку в К – 101 Регулирование расхода тяжелого газойля на промывку НО Стабилизация режима колонны К - 101
21 FV332 Трубопровод квенчинга в К – 101 Регулирование расхода квенчинга в К 101 НО Избежание закоксовывания нижней части колонны К - 101
22 FV333 Трубопровод водяного пара в К - 101 Регулирование расхода водяного пара в К - 101 НЗ Стабилизация режима колонны К - 101
23 FV334 Трубопровод водяного пара в К - 102 Регулирование расхода водяного пара в К - 102 НЗ Стабилизация режима колонны К - 102
24 FV335 Трубопровод острого орошения в К - 101 Регулирование расхода острого орошения в К - 101 НО Исключение нарушения режима К - 101  
25 FV337 Трубопровод нестабильного бензина в К - 103 Регулирование расхода нестабильного бензина в К - 103 НЗ Стабилизация работы К - 103
26 FV339 Трубопровод острого орошения в К - 103 Регулирование расхода острого орошения в К - 103 НО Исключение нарушения режима К - 103
27 FV359 Трубопровод тяжелого газойля от Н - 108/ 1,2 в сырье – гудрон Регулирование расхода тяжелого газойля от Н - 108/ 1,2 в сырье - гудрон НЗ Исключение нарушения режима работы печи П - 104
28 FV364 Трубопровод водяного пара из П - 104 Регулирование расхода водяного пара после П - 104 НО Исключение нарушения режима
29 FV371 Трубопровод ВЦК - 1 перед Т - 205/ 1 Регулирование расхода ВЦК - 1 перед Т - 205/1 НО Исключение нарушения режима
30 FV372 Трубопровод ВЦК - 1 перед Т - 205/ 2 Регулирование расхода ВЦК - 2 перед Т - 205/2 НО Исключение нарушения режима
31 LV406 Трубопровод гудрона в Р - 101 Регулирование уровня гудрона в Р - 101 НЗ Исключение переполнения резервуара Р - 101
32 LV409 Трубопровод из Е 109 в Е - 110 Регулирование уровня углеводородного конденсата в Е -109 НЗ Исключение нарушения режима
33 LV417 Трубопровод остатка висбрекинга в Х 105 Регулирование уровня в кубе К - 101 НО Исключение нарушения режима
34 LV418 Трубопровод легкого газойля висбрекинга в Т –109 Регулирование уровня в К - 102 НО Исключение нарушения режима
35 LV422 Трубопровод воды в Е - 102 из Е - 101 Регулирование уровня раздела фаз в отстойнике Е - 101 НЗ Исключение переполнения отстойника Е - 101
36 LV424 Трубопровод воды от Н- 106/ 1,2на очистку Регулирование уровня в Е - 102 НЗ Исключение переполнения емкости Е - 102
37 LV427 Трубопровод стабильного бензина с секции Регулирование уровня в кипятильнике стабилизатора Т - 110 НО Исключение нарушения работы кипятильника
38 LV428 Трубопровод сжиженного газа в Е - 101 Регулирование уровня в Е - 103 НЗ Исключение переполнения Е - 103
39 LV429 Трубопровод технологического конденсата в Е - 102 Регулирование уровня раздела фаз в отстойнике Е - 103 НЗ Исключение проскока углеводородов в технологический конденсат

 

Общие положения

 

К работе на установке могут быть допущены лица, достигшие 18-летнего возраста, прошедшие медицинское освидетельствование и все виды инструктажей по технике безопасности, обученные безопасным приёмам и методам работы непосредственно на рабочем месте и имеющие допуск к самостоятельной работе.

Пребывание лиц, не имеющих непосредственного отношения к обслуживанию производств, запрещается.

Согласно закону Российской Федерации об « Охране труда» ст.13 все работающие на производстве проходят периодические (1 раз в год) медицинские осмотры с целью контроля за состоянием здоровья. При уклонении работника от прохождения медицинских осмотров к дальнейшему выполнению трудовых обязанностей он не допускается.

Труд женщин на производстве допускается с ограничением в выполнении некоторых работ.

Женщинам запрещено:

Работа внутри аппарата;

Проведение газоопасных работ 1 группы;

Перенос тяжестей более 15 кг;

Непосредственное тушение пожаров.

 

Заключение

 

В процессе эксплуатации на Саратовском НПЗ установки висбрекинга гудрона требовались не предусмотренные технологическим регламентом дополнительные энергетические затраты на печи П-104, чтобы выдерживать температуру подачи исходного сырья в ректификационную колонну К-101 и для охлаждения Ц.О. до температуры 165оС.

Тепловые расчеты курсового проекта предлагаемого изменения перераспределения в блоке теплообмена тепловых потоков горячих и холодных фракций в имеющемся оборудовании, без замены действующего, показывают возможность получения температур, обусловленных технологическим регламентом.

Технологические расчеты указывают на возможность получения дополнительно 53180Гкал/год тепла водяного пара, необходимого для применения в технологических процессах завода.

Экономические расчеты показывают, что внедрение реконструкции блока теплообмена не требует больших капитальных затрат, т.е. все работы можно провести собственными силами департамента капстроительства и ремонтов за счет средств, предусмотренных на инвестиционную деятельность завода..

В результате это даст более 13827 тысяч рублей прибыли, прирост потока денежной наличности (ПНД) 9189 тысяч рублей. Окупаемость средств на реализацию предложений курсового проекта составит менее одного месяца, и поэтому можно считать, что проект не имеет финансового риска.



Список используемой литературы

 

1. Скобло А.И., Трегубова И.А. , Молоканов Ю.К. «Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности». М.:Химия, 1982. – 584 с.

2.«Справочник нефтепереработчика». Под редакцией Ластовкина Г.А., Радченко Е.Д., Рудина М.Г. – Л. Химия, 1986.- 648 с.

3.Ахметоа С.А. «Физико- химическая технологияглубокой переработки нефти и газа». Учебное пособие ч.1- Уфа, УНГТУ, 1997-279 с.

4.Ахметоа С.А. «Физико- химическая технологияглубокой переработки нефти и газа». Учебное пособие ч.2- Уфа, УНГТУ, 1997-304 с.

5. Корзун Н.В., Магарил Р.З. «Химия нефти».Учебное пособие –Тюмень: ТГНГУ, 2004. – 93 с.

6. Трушкова Л.В. «Расчеты по химии и технологии нефти и газа». Учебное пособие- Тюмень: ТГНГУ, 2001.- 76 с.

7. Кузнецов А.А., Качерманов С.М. Судаков Е.Н. «Расчеты процессов и ппаратов нефтеперерабатывающей промышленности» Изд. 2-е. – Л.: Химия, 1974. – 344 с.

8.Романков П.Г., Курочкина М.И., Мозжерин Ю.Я., Смирнов Н.Н. «Процессы и аппараты химической промышленности». – Л.: Химия, 1989. – 560 с.

9. Павлов К.Ф., Романков П.Г., Носков А.А. «Примеры и задачи по курсу процессов и аппаратов химической технологии».Учебное пособие. – 9-е изд. - Л.:Химия. 1981. – 5560 с.

10. Окунев Е.Б. Технологический регламент на производство продукции секции висбрекинга гудрона ОАО «Саратовский НПЗ» (Часть1,2).

11.Эмирджанов Р.Т. «Основы технологических расчетов в нефтепереработке». – М.: Химия, 1965. – 544 с.

12. Рудин М.Г., Смирнов Г.Ф. «Проектирование нефтеперерабатывающих и нефтехимических заводов». – Л.: Химия., 1984. – 256 с.

13. Сарданашвили А.Г., Львава А.И. «Примеры и задачи по технологии переработки нефти и газа». – М.: Химия, 1973. – 272 с.

Курсовой проект

по дисциплине:

“Химия и технология переработки композиционных материалов”

На тему: «Усовершенствование технологии установки висбрекинга гудрона мощностью по сырью 800 тысяч т/год”.

 

 

Выполнил:

Проверил:

 

 

2008



Содержание

 

Введение

Основная часть

I. ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

I.I. Информационный анализ

1.2.Характеристика исходного сырья, вспомогательных материалов и готовой продукции

1.3.Описание технологического процесса

1.4.Основные параметры технологического процесса

1.5. Техническая характеристика основного технологического оборудования

1.6.Технологические расчеты

1.6.1. Материальные расчеты

1.6.2. Расчет основного технологического оборудования

1.6.3. Энергетические расчеты

2 . РАЗДЕЛ «КИП и А»

3. РАЗДЕЛ «БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА»

ЗАКЛЮЧЕНИЕ

Список используемой литературы



Введение

 

Нефть и газ– это основные источники энергии в современном мире. На топливах, полученных из них, работают двигатели сухопутного, воздушного и водного транспорта, тепловые электростанции. В настоящее время насчитывается 100 различных процессов первичной и вторичной переработки нефти, реализованных в промышленности. Намечается внедрение новых, весьма перспективных разработок, направленных на улучшение продукции и совершенствование технологии.

Производство нефтепродуктов и химического сырья из нефти организовано на нефтеперерабатывающих заводах (НПЗ). Переработка нефти на НПЗ осуществляется с помощью различных технологических процессов, которые могут быть условно разделены на следующие группы:

1.первичная переработка ( обессоливание и обезвоживание, атмосферная и атмосферно – вакуумная перегонка нефти, вторичная перегонка бензинов, дизельных и масляных фракций);

2.термические процессы (термический крекинг, висбрекинг, коксование, гидролиз);

3.термокаталические процессы (каталический крекинг–реформинг, гидроочистка,

4.процессы переработки нефтяных газов (алкилирование, полимеризация, изомеризация);

5.процессы производства масел и парафинов ( деасфальтизация , депарафинизация, селективная очистка, адсорбционная и гидрогенизационная доочистка);

6.производство битумов, пластичных смазок, присадок, нефтянных кислот, сырья для получения технического углерода;

7.процессы производства ароматических углеводородов ( экстрация , гидроалкилирование, деалформинг, диспропорционирование).

Нефти по своему составу и свойствам различаются весьма значительно. Физико – химические свойства нефтей и составляющих их фракций оказывают влияние на выбор ассортимента и технологию получения нефтепродуктов. При определении направления переработки нефти стремятся по возможности максимально использовать индивидуальные природные особенности химического состава.

Переработку нефтей малосернистых высокопарафинистых и высокосернистых парафинистых осуществляют с одновременным получением фракций бензина, керосина, дизельного топлива, вакуумного газойля и гудрона.

Количество и ассортимент продукции, вырабатываемой нефтеперерабатывающей и нефтехимической промышленностью, непрерывно увеличивается. Соответственно эти отрасли промышленности пополняются новой аппаратурой и осваивают новые технологические процессы переработки нефтяного сырья, направленные на улучшение качества, увеличения целевых продуктов и снижения себестоимости.

Наибольшую трудность в нефтепереработке представляет квалифицированная переработка гудронов (особенно глубоковакуумной перегонки) с высоким содержанием асфальто – смолистых веществ, металлов и других гетеросоединений, требующая значительных капитальных и эксплуатационных затрат. В этой связи на ряде НПЗ нашей страны и за рубежом ограничиваются переработкой гудронов с получением таких не топливных нефтепродуктов, как котельное топливо, битум, нефтяной пек, нефтяной кокс и т.д.

Гудроны, остатки после атмосферно – вакуумной отгонки фракций обессоленных нефтей, перегоняющихся до 480 – 500оС, содержатся в различных нефтях от 15 до 40% .

Получающийся гудрон непосредственно не может быть использован как котельное топливо из-за высокой вязкости. Для получения товарного котельного топлива из таких гудронов без их переработки требуется большой расход дистиллятных разбавителей, что сводит практически на нет достигнутое вакуумной перегонкой углубление переработки нефти. Наиболее простой способ неглубокой переработки гудронов – это висбрекинг с целью снижения вязкости, что уменьшает расход разбавителя на 20 – 25% масс, а также соответственно увеличивает общее количество котельного топлива.

Висбрекинг (в переводе с английского “cнижение вязкости”) – процесс крекинга гудрона, проводимый при температурах 450 – 480оС с целевым назначением снижения вязкости котельного топлива.

Висбрекинг проводят при менее жестких условиях, чем термокрекинг, вследствие того, что во – первых, перерабатывают более тяжелое, следовательно, легче крекируемое сырье; во – вторых, допускаемая глубина крекинга ограничивается началом коксообразования ( температура 440 – 500оС, давление 1,4 – 3,5 МПа ).

При относительно невысоких температурах и протекании реакций в жидкой фазе образующиеся крупные радикалы преимущественно стабилизируются и процесс

протекает в направлении уменьшения среднего размера молекул:

 


R1R2 R1* + R2*

R1*( R2* ) + RH R1H + R2H + R*,

 

в результате чего, после отделения газообразных продуктов и бензиновых фракций, остаток имеет меньшую вязкость, чем исходное сырье.

Исследованиями установлено, что по мере увеличения продолжительности (тоесть углубления) крекинга, вязкость крекинг-остатка в начале интенсивно снижается, достигает минимума, а затем возрастает. Экстремальный характер изменения зависимости вязкости остатка от глубины крекинга можно объяснить следующим образом. В исходном сырье (гудроне) основным носителем вязкости являются нотивные асфальтены “рыхлой” структуры. При малых глубинах превращения снижение вязкости обуславливается образованием в результате термо – декструктивного распада боковых алифатических структур молекул сырья на более компактных подвижных вторичных асфальтенов меньшей молекулярной массы. Последующее возрастание вязкости крекинг – остатка объясняется образованием продуктов уплотнения – карбенов и карбоидов, также являющихся носителями вязкости. Считается, что более интенсивному снижению вязкости крекинг – остатка способствует повышение температуры при соответствующем сокращении продолжительности висбрекинга.

К преимуществам висбрекинга перед другими процессами относятся: гибкость процесса, что позволяет непосредственно перерабатывать тяжелые нефтяные остатки, относительная простота технологии, низкие капитальные и эксплуатационные затраты. Висбрекинг характеризуется невысокой конверсией нефтяных остатков, но позволяет в 10 и более раз снизить вязкость исходного сырья с целью получения стандартного котельного топлива, что дает возможность высвободить большую часть прямогонного вакуумного газойля для продажи.

Процесс висбрекинга гудрона в технологической схеме НПЗ играет важную роль, поскольку оказывает очень сильное влияние на глубину переработки нефти и на общие экономические показатели производства нефтепродуктов. Позволяет корректировать структуру выхода продуктов, для более полного соответствия потребностям рынка, и достичь следующих целей:

- увеличить глубину переработки нефти на 16 – 18% и достичь уровня 70 – 72%

- высвободить дополнительный объем вакуумного газойля для продажи.

- увеличить производство более ценного топочного мазута.

- повысить выработку автомобильного бензина на 1,4-2% масс на нефть.

Внедрение процесса Висбрекинга гудрона позволяет значительно улучшить экономические показатели предприятия.


Основная часть

Технологический раздел

Информационный анализ

 

Висбрекинг – особая разновидность термического крекинга, термодеструктивный процесс превращения тяжелого нефтяного сырья в жидкие, газообразные и твердые продукты. Сырьем процесса являются, главным образом, гудроны, полугудроны и мазуты. Эти нефтяные остатки характеризуются сложным химическим составом и агрегатным состоянием отдельных компонентов, строением, свойствами и размерами частиц структурных образований, уровнем молекулярного взаимодействия в системе.

Согласно представлениям (4) остаточный нефтепродукт может быть представлен как коллоидная система, в котором дисперсная фаза состоит из мицеллы, содержащей асфальтены, смолисто-асфальтеновые вещества и высокомолекулярные мальтены.

Мицелла состоит из ядра асфальтенов, на которых адсорбированы высокомолекулярные ароматические углеводороды из мальтеновой фракции. Эти высокомолекулярные углеводороды с повышенным (по сравнению с асфальтенами) содержанием водорода на ядрах. В стабильном нефтепродукте система сорбируемых мальтенов такова, что все сорбционные силы оказываются нейтрализованными. Мицелла находится в физическом равновесии с окружающей вязкой фазой. Другими словами, асфальтены пептизированы и находятся в коллоидно-дисперсном состоянии.

Сорбционное равновесие может быть нарушено несколькими способами, например, добавлением углеводородов с высоким содержанием водорода (алифатические углеводороды), повышением температуры или другими воздействиями. Часть сорбированных компонентов растворяются в сплошной мальтеновой фазе, за счет преципитации асфальтеновых цепей.(4)

Представления о нефти и о нефтепродуктах как о нефтяных дисперсных системах, во многом проясняют химизм и механизм реакций, протекающих в них и, таким образом, позволяют прогнозировать поведение системы и пути интенсификации процессов.

В практике нефтепереработки наиболее распространенными являются нефтяные дисперсные системы с дисперсионной фазой в твердом, жидком и газообразном состоянии и жидкой дисперсной средой.

Термическое превращение нефтяных фракций - сложный химический процесс. Сырье, поступающее на висбрекинг, состоит из трех основных классов углеводородов: парафиновых, нафтеновых и ароматических. Превращение углеводородов разных классов при умеренном термическом крекинге происходит с различной трудностью. Легче всего подвергаются крекированию (расщеплению) парафиновые углеводороды, наиболее устойчивые к температурному воздействию ароматические, нафтеновые углеводороды занимают промежуточное положение.

Скорость распада углеводородов одного и того же класса возрастает с увеличением молекулярного веса. Поэтому на промышленных установках легкое сырье (лигрол, керосино-газойлевые фракции) крекируются при более жестком температурном режиме 530-540 0С и 500-510 0С соответственно, а тяжелое сырье (гудрон) при более мягком температурном режиме 470-490 0С. Для крекинга парафиновых углеводородов характерны реакции их распада на более низкомолекулярные компоненты с образованием алкена и алкана. Низкомолекулярные углеводороды - этан, пропан и бутаны могут также дегидрироваться:

 

 CnH2 n+2 CnH2 n+H2

 

С увеличением молекулярного веса алкана, вероятность дегидрирования уменьшается. Продукты первичного распада реагируют с другими углеводородами и между собой, а также распадаются дальше.

Термическая устойчивость простейших газообразных парафиновых углеводородов очень велика. Так, этан при температуре ниже 700-800 0С практически не разлагается. По мере увеличения молекулярного веса алкана термическая устойчивость его падает и преобладающим становятся реакции расщепления по связям С-С, менее прочной, чем связь С-Н.

Место разрыва, а, следовательно, преимущественное образование тех или иных продуктов реакции зависит от температуры и давления. Чем выше температура и ниже давление, тем место разрыва углеродной цепи все больше смещается к ее концу и значительно возрастает выход газообразных продуктов.

При температуре 400-500 0С разрыв происходит по середине цепи.

Нафтеновые углеводороды термически стабильны. Однако, при крекинге нафтеновые углеводороды с длинными боковыми цепями ведут себя так же, как парафиновые: с увеличением длины боковой цепи их термическая устойчивость снижается.

Для нафтеновых углеводородов наиболее характерны следующие типы превращения при высоких температурах:

- деалкилирование или отщепление боковых алкановых цепей;

- дегидрирование кольца с образованием цикло-олефинов и ароматических углеводородов;

- частичная или полная дециклизация полициклических нафтенов после деалкилирования;

- распад моноциклических нафтенов на олефины или парафин-диолефины.

Ароматические углеводороды наиболее термически устойчивы. Поэтому они накапливаются в жидких продуктах крекинга тем в больших количествах, чем выше температура процесса.

Голоядерные (лишенные боковых цепей) ароматические углеводороды, так же как и алкилированные углеводороды с короткими боковыми цепями, практически не подвергаются распаду. Единственным направлением их превращений является конденсация с выделением водорода. В результате происходит накопление полициклических углеводородов.

В результате конденсации бензола, нафталина и других голоядерных углеводородов образуются дифенил, динафтил и им подобные углеводороды:

 

2C6H6 C6H5 – C6H5 + H2

2C10H8 C10H7 – C10H7 + H2

 

Для алкилароматических углеводородов характерна конденсация через метильные группы, а не путем соединения бензольного кольца.

 

 2CH3 – C6H4 – CH3 CH3 – C6H4 – CH2 – CH2 – C6H4 – CH3 + H2

 

Ароматические углеводороды с длинными боковыми цепями способны деалкилироваться.

Если длина цепи алкилированного ароматического углеводорода значительна, то по термической стабильности он приближается к парафиновому углеводороду.

Развитие реакций конденсации разнообразных циклических углеводородов приводит в конечном итоге к образованию карбоидов (кокса). Эта особенность ароматических углеводородов делает их нежелательными компонентами сырья крекинга.

В сырье для крекинга ненасыщенные углеводороды отсутствуют, но роль их в химии крекинга велика, т.к. они всегда образуются при распаде углеводородов других классов. Олефинами свойственны самые разнообразные реакции. Умеренные температуры (до 500 0С) и высокие давления способствуют протеканию реакций полимеризации олефинов, высокие температуры и низкие давления вызывают реакции распада.

Разложение олефинов может протекать в различных направлениях:


CnH2n 2CmH2                                                  (деполимеризация);

CnH2n CmH2m + CgH2g                      (распад);

CnH2n CmH2m + 2 + CgH2g + CpH2p – 2    (деструктуризация конденсата);

CnH2n CmH2m – 2 + H2                      (деструктивная конденсация);

CnH2n CmH2m – 2 + CgH2g + 2          (распад).

 

В области умеренных температур, где константы скорости термической полимеризации олефинов уменьшаются с повышением молекулярного веса исходного углеводорода.

В области высоких температур наблюдается обратное явление: подобное парафинам, с увеличением молекулярного веса олефинов термическая устойчивость их падает.

Наряду с полимеризацией и разложением идет циклизация и дегидроциклизация олефинов, а также протекает реакция перераспределения водорода с образованием системы парафин-диолефин.

Основная масса сернистых соединений нефти имеет большую молекулярную массу и высокую температуру кипения. Поэтому от 70 до 90 % всех сернистых соединений концентрируется в мазуте и гудроне.

При разложении сернистых соединений выделяется сероводород, который уходит вместе с газами крекинга, образуются жидкие сернистые компоненты (например, меркаптаны), переходящие в бензиновые фракции крекинга. Возможно, выделение свободной серы:

 

R – S – RI H2S + олефины;

R – S – RI R-S-H + олефины

 

Термически устойчивые сернистые соединения (тиофены и им подобные) накапливаются в высокомолекулярных продуктах.

Механизм крекинга.

Сырьем для промышленных установок термического крекинга является смесь многих углеводородов сложного строения. Детально и точно объяснить механизм крекинга не представляется возможным из-за одновременного протекания различных реакций.

Считается, что распад углеводородов имеет цепной характер и подчиняется теории свободных радикалов.

На основании, ряда работ Н.Н. Семенов показал, что реакции крекинга полностью протекают по радикально-цепному механизму.

Согласно этой теории первичный распад алканов под воздействием повышенной температуры происходит по связям С-С с образованием двух радикалов различной молекулярной массы.

 

CH3 (CH2) 5CH3 C4H9 + C3H7

 

Радикалы весьма реакционно способны и в зависимости от их размеров и применяемых условий могут:

- взаимодействовать с другими углеводородами;

- разлагаться на олефин и меньший радикал;

- рекомбинировать с другими свободными радикалами;

- вступать в реакции с поверхностями металла.

Радикалы, содержащие более двух атомов углерода, диспропорционируют на меньший радикал и олефин:

         


C8H17 C4H8 + C4H9

     
 


                                           C3H6 + CH3        

 

Распад радикалов продолжается до образования метильных и этильных радикалов или же олефинов и атомарного водорода.

    Метильный и этильный радикалы реагируют с молекулами исходного углерода, образуя при этом СН4, С2Н6 и новый радикал:

     
 


С6Н5 + С6Н4 С2Н6 + С6Н13

 

Цепная реакция свободных радикалов обрывается в результате рекомбинации двух радикалов:

 


С6Н13 + СН3 С7Н16

 

или в результате взаимодействия радикала с поверхностью металла.

Механизм распада алкенов так же как алканов, имеет цепной характер.

Теория свободных радикалов позволяет объяснить протекание реакций разложения, она объясняет образование более тяжелых соединений, чем молекулы исходного сырья. Эти соединения, выводимые на промышленных установках в виде котельного топлива, образуются в результате полимеризации олефинов и реакций уплотнения ароматических углеводородов с последующей конденсацией в полициклические асфальтеновые компоненты.

Термодинамика крекинга.

Реакции, происходящие при термическом крекинге, представляют собой совокупность реакций разложения и конденсации. Поскольку преобладают реакции разложения, сопровождающиеся поглощением тепла, то они перекрывают экзотермический эффект реакций конденсации.

Суммарный тепловой эффект термического крекинга отрицателен, и поэтому необходимо подводить тепло со стороны.

Значение величин теплоты реакции необходимо при проектировании реакционных аппаратов. Теплота реакции может быть определена по уравнению:

 

Н = 50000 (Мс – Мп) / МсМп, где

Н – теплота крекинг-процесса в ккал/кг при 25 0С и I ат;

Мс – молекулярный вес сырья;

Мп – молекулярный вес продуктов реакции.

Чаще теплоту реакции крекинга определяют при помощи закона Гесса:

 

Qреак. = Qг + QБ + Q п.ф. + Qо – Qс, где

 

Qреак. – теплота реакции;

Qг, QБ, Qп.ф., Qо, Qс – теплота сгорания газа, бензина, промежуточной фракции, остатка и сырья полученные экспериментально.

Теплота реакции термического крекинга выражается в расчете на 1 кг. Крекируемого или превращенного сырья. Так, тепловой эффект висбрекинга тяжелого нефтяного сырья составляет 28-56 ккал на 1 кг. сырья.

При глубине разложения 25-30 % тепловой эффект реакции находится на уровне 28-30 ккал/кг сырья.

Глубина превращения сырья

При крекинге не очень тяжелого по фракционному составу сырья глубину его превращения характеризуют выходом бензина.

Для тяжелого остаточного сырья выход бензина менее характерен, т.к. первичными продуктами разложения являются более тяжелые фракции и цель процесса – получение крекинг-остатка пониженной вязкости или газойлевых фракций.

При висбрекинге целевым продуктом является крекинг-остаток. Потенциальный выход последнего определяется его качеством. Основным требованием, предъявленным к качеству остатка, является его вязкость.

При неглубоком крекинге остаточного сырья остаток по плотности и вязкости может отличаться от сырья совсем незначительно. С углублением процесса остаток разбавляется, с одной стороны, образующимися при крекинге газойлевыми фракциями, с другой маловязкими полимерами. При этом, чем меньше плотность и вязкость получаемого остатка висбрекинга, тем ниже будет выход бензина.

Выход бензина при висбрекинге составляет - 2÷5 % масс. на сырье.

Технологическое оформление процесса.

Принятая проектом технология процесса висбрекинга гудрона предусматривает термическое его разложение при высокой температуре (до 500 0С) и давлением до 37 кгс/см2 в трубчатой печи, сочетающей нагревательный и реакционный змеевик, с последующим охлаждением реакционной массы на выходе из печи циркулирующим потоком остатка висбрекинга (квенчинг) до 420 0С. разделение продуктов крекинга осуществляется в колонне при давлении 4,5÷4,8 кгс/см2, при малом (до одной минуты) времени пребывания жидкой фазы в ректификационной колонне первичного испарения.

Выделенная дизельная фракция в концентрационной части ректификационной колонны первичного испарения после охлаждения вовлекается совместно с рабочей жидкостью с вакуумного блока установки ЭЛОУ-АВТ-6 в количестве обеспечивающей получение мазута топочного вторичного.

Предусмотрены мероприятия, замедляющие коксообразование:

- использование в качестве турбулизатора подачи в реакционный змеевик печи П-104 водяного конденсата.

Факторы, влияющие на процесс.

Важнейшими факторами, определяющими процесс легкого термического крекинга, являются давление, температура и продолжительность крекинга, подача турбулизаторов и рециркуляция продуктов крекинга и другие.

Давление.

Давление существенного влияния на процесс висбрекинга не оказывает, если крекинг тяжелых нефтепродуктов протекает в жидкой фазе при температуре 420÷480 0С.

Влияние давления повышается, как только образующиеся продукты распада или исходное сырье переходят в паровую фазу (480÷500 0С).

 Обычно при крекинге остаточного сырья применяют невысокое давление в пределах 25 кгс/см2.

Это позволяет:

- вести процесс в жидкой фазе;

- быстро выводить из реакционного змеевика первичные продукты распада – газойлевые фракции, не давая им разлагаться на газ и бензин.

Повышение давления увеличивает количество продуктов уплотнения.

Температура.

Температура и продолжительность крекинга являются факторами при определенных температурах взаимозаменяемыми. Увеличивая температуру крекинга и уменьшая продолжительность времени пребывания в зоне высоких температур, можно получить ту же глубину разложения сырья, что и при более мягкой температуре, но с большей длительности крекинга.

Процесс висбрекинга представляет собой совокупность реакций разложения и уплотнения молекул. При уменьшенных температурах 420-450 0С преобладают реакции полимеризации и уплотнения, а при более высоких 450-500 0С реакции расщепления. С повышением температуры скорость реакции обоего типа возрастает. Однако, скорость реакций разложения увеличивается значительно быстрее, чем реакций уплотнения и эта разница будет тем больше, чем выше температура.

Действие температуры наблюдается в широком диапазоне глубины превращения гудрона и объясняется разным значением энергии активации реакций распада и уплотнения.

При термическом крекинге гудрона средняя энергия активации распада составляет 55000 калл/моль, а уплотнения 30000 калл/моль, при этом температурные градиенты скорости реакций собственно равны 15 и 28 0С, т.е. реакции уплотнения значительно менее чувствительны к температуре, чем реакции распада. Таким образом, процесс термокрекинга остаточных фракций целесообразно вести при повышенных температурах.

Вязкость получаемого остатка висбрекинга во многом зависит от температуры.

С повышением температуры крекинга выход продуктов уплотнения уменьшается, а продуктов распада (особенно газа и бензина) возрастает.

От температуры крекинга зависит вязкость получаемого остатка висбрекинга. Температурный предел 500-510 0С считается оптимальным для снижения вязкости остатка висбрекинга при глубине крекинга 20 % и более.

Для получения товарного мазута вторичного топочного глубина разложения сырья должна быть на уровне 25-30 %. Такая глубина превращения обеспечивает получение средних фракций в количестве, необходимом для разбавления остатка висбрекинга, позволяющем снизить его вязкость и температуру застывания до нужной величины.

Оптимальная глубина разложения, обеспечивающая получение товарного мазута вторичного топочного, достигается при проведении процесса висбрекинга при температуре 480-500 0С и малом времени пребывания сырья.

Подача турбулизаторов и рециркуляция продуктов крекинга.

Снижение вязкости при висбрекинге происходит за счет разложения крупных молекул на более мелкие с образованием газа, низкооктанового бензина с высоким содержанием непредельных углеводородов и средних дистиллятных фракций.

 Наряду с дистиллятными фракциями, образуется значительное количество газа и продуктов уплотнения, которые, оседая на стенках аппаратуры и трубопроводов, приводят к быстрому ее закоксованию.

Для увеличения выхода средних фракций и уменьшения коксоотложений весьма эффективны мероприятия, замедляющие реакции уплотнения, но не влияющие на скорость реакций разложения. К таким мероприятиям, относят:

- исключение рециркуляции средних дистиллятных фракций;

- подачи турбулизаторов для предотвращения коксоотложений в трубопроводах и аппаратуре;

- подаче водяного конденсата в среднюю часть реакционного змеевика печи;

- подачи атикоксообразовательных реагентов.

Использование водяного конденсата в качестве турбулизаторов препятствует коагуляции и уплотнению основных коксообразующих компонентов – асфальтенов, тем самым, снижая коксообразование и турбулизируя поток, препятствуют отложению продуктов уплотнения на стенках трубопроводов и аппаратуре.

 Основные регулируемые параметры висбрекинга – температура, давление, время пребывания сырья в зоне реакции. Увеличение любого из них приводит к ужесточению режима. Для достижения определенной жесткости режима данные параметры можно изменять в определенных диапазонах. При заданной жесткости, т.е. степени конверсии, или глубины превращения сырья, распределение выходов получаемых продуктов практически постоянны.

Увеличение выходов углеводородных газов и дистиллятов может быть достигнуто ужесточением режима висбрекинга, например, путем повышения температуры на выходе из печи. Ужесточение режима приведет также к сокращению расхода дистиллятов, добавляемых в котельное топливо для достижения его соответствия требованиям спецификации на готовый продукт.

Однако большая жесткость режима приводит и к крекированию тяжелых дистиллятов в более легкие компоненты, что нежелательно, так как эти дистилляты выполняют функцию растворителей асфальтовых составляющих. В случае крекирования дистилляты сепарируются, образуя коксовые отложения в трубах печи. Осуществление висбрекинга в таком режиме может привести к необходимости преждевременного ремонта установки; кроме того, существует вероятность получения нестабильного котельного топлива.(1,3)

Качественные показатели остатка висбрекинга различных фракций западносибирской нефти (фракции выкипающей выше 2000 С) представлены в таблице 1..(14)

Здесь же даны величины коэффициента снижения вязкости R, который равен отношению вязкости исходного продукта при температуре 800 С к вязкости остатка висбрекинга, определенной при этой температуре.

Температура кипения исходного сырья, 0 С

Содержание асфальтенов,

 % мас.

Вязкость сырья, ВУ80

Температура опыта и вязкость остатка висбрекинга

4500 С

4700 С

4900 С

5100 С

ВУ80 R ВУ80 R ВУ80 R ВУ80 R
400-490 490-540 >400 >540 Отс. Сл. 3,2 7,6 2,6 46,2 18,6 783 2,1 5,0 7,7 107 1,2 9,2 2,4 7,3  - 5,3  - 95,9  - 8,7  - 8,2 2,0 4,3 6,4  - 1,5 10 2,4  - 2,2  - 6,6 71,7 1,2  - 2,8 10

Таблица 1

Наибольшее снижение вязкости наблюдается при висбрекинге фракций, имеющих высокую исходную вязкость (фракции, выкипающие в пределах температур выше 4900 С), для которых коэффициент снижения вязкости 7-10. Как видно, повышение температуры более 450-4700 С не приводит к существенному снижению вязкости, но, как правило, вызывает ускорение закоксовывания технологического оборудования.

 Стабильность остатка висбрекинга как товарного продукта является основным критерием жесткости режима процесса. Неверно выбранная жёсткость, или степень конверсии, может привести к фазовому расслоению котельного топлива даже после его компаундирования.   Стабильность начинает уменьшаться, как только уровень жёсткости режима и, следовательно, конверсия переходят при увеличении определенную точку зависящую от характеристик сырья

Важным параметром процесса висбрекинга является давление. Давление, в особенности для сырья с пониженными температурами начала кипения, определяет как фазовое состояние реакционной системы, так и направление, и скорость реакций. Давление должно обеспечивать жидкое агрегатное состояние крекируемого сырья, так как крекинг в жидкой фазе обеспечивает наиболее высокие коэффициенты теплопередачи отсутствие механических перегревов ,минимальное коксообразование, возможность провести процесс в малогабаритных аппаратах, минимальный расход топлива и в конечном счёте эффективность процесса. Кроме того, повышение давление позволяет несколько увеличить производительность установки.(12)

 С повышением давления уменьшается выход газообразных продуктов распада и сокращается объём газовой фазы, причём плотность её растёт примерно пропорционально давлению. Влияние высокого давления проявляется в реакциях гидрирования : по мере увеличения давления от 0,2 до 5 МПа , доля непредельных в лёгких продуктах крекинга снижается в полтора – два раза, при этом увеличивается доля продуктов уплотнения.(22)

Типичным сырьем висбрекинга являются мазуты и гудроны. Степень конверсии этих остатков обычно составляет 10-15% в зависимости от их физико-химических характеристик и режима. Она служит критерием жесткости процесса и определяется как количество фракции >343оС мазута или фракции >482оС гудрона, превращаемой в более легкие компоненты.

Степень конверсии ограничивается рядом характеристик сырья: содержанием асфальтенов и натрия, коксуемостью по Конрадсону. Сырье с высоким содержанием асфальтенов характеризуется меньшей степенью конверсии, чем сырье с содержанием асфальтенов, не превышающим нормы, при одинаковом объеме производства стабильного котельного топлива. В присутствии натрия, а также при высокой коксуемости по Конрадсону коксообразование в трубах печи усиливается.

Изменения качества сырья влияют на степень его конверсии при заданной жесткости режима. Анализ данных, полученных при висбрекинге на пилотной установке различного сырья, показал, что для каждого конкретного сырья с увеличением жесткости режима вязкость фракции >204оС сначала уменьшается, а затем при достаточно жестком режиме резко увеличивается, что свидетельствует об образовании промежуточных коксообразующих соединений. Точка, в которой направление изменения вязкости меняется на обратное, для каждого сырья различна, но обычно совпадает с точкой выхода 20,2 - 23,6 м 3/ м 3 газа С1 – С6 в нормальных условиях. Считают, что после достижения этой точки котельное топливо становится нестабильным.

Между отдельными результатами пилотных испытаний установлена взаимосвязь. Точка, в которой меняется направление изменения вязкости, может быть предсказана и использована для определения расчетных параметров конкретного сырья при проектировании, чтобы избежать образования нестабильного котельного топлива и добиться максимальной конверсии сырья.

В промышленности используют две технологии висбрекинга:

- проведение реакции в печном змеевике;

- проведение реакции в реакционной камере.

Нефтяные остатки после нагрева в печи до высокой температуры поступают при заданном давлении в сокинговую (реакционную) зону, находящуюся либо в печи, либо во внешнем аппарате. Выходящий из этой зоны поток быстро охлаждается для прекращения реакции с помощью особого технологического приема – квенчинга.

При печном варианте висбрекинга конструкция печи должна обеспечивать оптимальное время пребывания сырья в реакционной зоне для достижения нужного образования продуктов реакции и минимизацию коксовых отложений.

Процесс в реакционной камере происходит при более низкой температуре с более длительным временем нахождения, чем в реакционном змеевике. Схема с камерой позволяет понизить температуру после печи, уменьшить ее тепловую нагрузку, однако приводит к установке сложного аппарата значительного объема, к периодической выгрузке из него кокса, что может повлиять на длительность пробега установки. При этом следует иметь ввиду, что существенного отличия в выходах фракций не ожидается.

Змеевиковый (печной) висбрекинг

предлагают фирмы «Foster Wheeler Co.» и «UOP». В этом случае высокотемпературный крекинг осуществляется в специальном реакционном змеевике печи. Поскольку степень конверсии сырья в первую очередь зависит от его температуры и времени пребывания в зоне реакции, змеевиковый висбрекинг можно определить как высокотемпературный кратковременный процесс. Фирма «Foster Wheeler» успешно спроектировала большое число печей данного типа для НПЗ в разных странах мира.(9)

Основное преимущество змеевиковой печи — наличие двух зон нагрева. Такая конструкция обеспечивает: большую гибкость подвода тепла, что позволяет лучше регулировать температуру нагрева сырья: легкость удаления кокса из труб печи паровоздушным способом; получение стабильного котельного топлива, что особенно важно для нефтеперерабатывающих заводов с ограниченными возможностями смешивания топлив.

Схема базовой установки висбрекинга гудрона показана на рис.1.4.1.

 

 

 

 


Рис.1.4.1 Схема базовой установки висбрекинга : 1-печь; 2-фракционнирующая колонна; 3-воздушный холодильник-конденсатор; 4-колонна отпарки газойля;

5-сепаратор; 6-воздушный холодильник; 7-узел нагрева и выработки пара.

1-сырьё; 2-водяной пар; 3-углеводородный газ; 4-кислая вода; 5-нестабильная бензиновая фракция; 6-газойлевая фракция; 7-котельное топливо.

 

Висбрекинг с сокинг-камерой.

В альтернативном процессе конверсия частично происходит в печи. Однако, основная ее доля приходится на сокинг-камеру, где двухфазный поток из печи выдерживается при повышенной температуре в течение за­данного времени. Сокерный висбрекинг определяется как низкотемпературный процесс с длительным пребыванием сырья в зоне реакции. Лицензиаром этого процесса является фирма «Shell». Ряд проектов установок висбрекинга сокерного типа выполнила и фирма «Foster Wheeler».

Реакционная камера, обеспечивая необходимое время пребывания сырья, позволяет работать с потоком более низкой температуры на выходе из печи и тем самым экономить печное топливо. Несмотря на очевидные экономические преимущества, этот процесс имеет ряд недостатков, основной из которых — сложность очистки печи и сокерной камеры от кокса. Эта очистка проводится реже, чем на установке со змеевиковой печью, однако для нее требуется более сложное оборудование.

Схема установки висбрекинга гудрона с выносной реакционной камерой показана на рис.1.4.2.


 

 


Рис.1.4.2. Схема базовой установки висбрекинга с сокинг - камерой : 1-печь; 2-фракционнирующая колонна; 3-воздушный холодильник-конденсатор; 4-колонна отпарки газойля;5-сепаратор; 6-воздушный холодильник; 7-узел нагрева и выработки пара; 8-сокинг-камера.

1-сырьё; 2-водяной пар; 3-углеводородный газ; 4-кислая вода; 5-нестабильная бензиновая фракция; 6-газойлевая фракция; 7-котельное топливо.

 

Обычно кокс из сокера удаляют путем резки водой под высоким давлением. В результате образуется значительное количество воды, загрязненной частицами кокса, которую необходимо удалять, фильтровать и возвращать для повторного использования. В отличие от установок замедленного коксования (УЗК.) установки висбрекинга обычно не оснащены оборудованием для резки кокса и очистки загрязненной воды. Затраты на это оборудование на установке висбрекинга экономически не оправданы,

Качество и выходы продуктов на установках обоих типов при одинаковой жесткости режима в целом одинаковы и не зависят от конфигурации установки.(9)

Россия, на пороге XXI века, несмотря на спад производства, остается достаточно крупным мировым экспортером добываемых нефтей и потенциально мощным производителем нефтепродуктов на базе их переработки. В производственном потенциале мировой нефтепереработке Россия продолжает занимать достойное второе место в мире после США. Однако, по объему реальной переработки нефти российская нефтеперерабатывающая промышленность переместилась за последние годы на четвертое место, уступив второе место - Японии и третье – Китаю.

Переработка нефтяного сырья на российских НПЗ осуществляется с недостаточной загрузкой мощностей производственного потенциала и с низкой (относительно мировой) степенью конверсии мазута. Целевые нефтепродукты – автобензины, дизельные топлива, топочные мазуты, смазочные масла – по эксплуатационным и экологическим свойствам уступают в серийном производстве мировому уровню.

Решением выше изложенной проблемы, суперприоритетным направлением, является развитие российской нефтеперерабатывающей промышленности по углублению переработки нефтяного сырья. Основными базовыми процессами деструктивной переработки мазута выступают процессы каталитического крекинга и гидрокрекинга, которые требуют оснащения оборудованием целых комплексов, дополнительных процессов и установок. ОАО “Саратовский НПЗ ” не в состоянии инвестировать такие дорогостоящие комплексы со сроками окупаемости до двух-трех лет.

В связи с этим наиболее приоритетным направлением является создание современной технологической схемы производства с небольшими материальными и энергетическими затратами и коротким сроком окупаемости.

Одним из эффективных и гибких вторичных процессов переработки мазутов и гудронов является висбрекинг, отличительной особенностью которого, по сравнению с другими процессами переработки нефти и нефтепродуктов, являются низкие капитальные и энергетические затраты. Висбрекинг, при относительной простоте технологического и аппаратурного оформления, позволяет вырабатывать из нефтяных остатков котельные топлива требуемого качества без разбавления легкими топливными фракциями, перерабатывать остаточные фракции в дистиллятные, получать дополнительно некоторое количество средних и легких фракций.

Процесс висбрекинга – это разложение тяжелых остатков нефтепереработки при умеренной (470-490оС) температуре и давлении(5-20 кгс/см2).

Решение о включении висбрекинга в схему НПЗ принимается обычно исходя из следующих задач:

- уменьшения вязкости остаточных потоков с целью сокращения расхода высококачественных дистиллятов, добавляемых в котельное топливо для доведения его вязкости до требования спецификаций на готовый продукт;

- необходимости переработки части остатков в дистилляты, в частности в вакуумный газойль - сырье крекинга;

- углубление переработки нефти.

Основная цель строительства секции висбрекинга гудрона на ОАО «Саратовский НПЗ» - углубление переработки нефти на заводе. Ввод в эксплуатацию установки висбрекинга гудрона увеличит глубину переработки нефти с 51,4% до 73,7%.

Существует две схемы проведения процесса висбрекинга:

- проведение реакции висбрекинга в печном змеевике;

- проведение реакции висбрекинга в реакционной камере.

Типичным сырьем висбрекинга являются мазуты и гудроны. Степень конверсии этих остатков обычно составляет 10-15% в зависимости от их физико-химических характеристик и режима. На «Саратовском НПЗ» в качестве сырья используется гудрон - остаточный продукт вакуумной колонны установки ЭЛОУ-АВТ-6.Годовое производство гудрона составляет 1 млн.тонн.

Продуктами висбрекинга являются: топливный газ, бензиновая фракция и мазут топочный М-100.

Продукты установки висбрекинга используются:

- газ углеводородный (топливный) после очистки от сероводорода раствором амина используется в качестве топлива на установке и других объектах завода;

- бензиновая фракция после очистки используется в качестве компонента при приготовлении бензина А-80;

- топочный мазут М-100 используется в качестве жидкого топлива на электростанциях, ТЭЦ, и т.д.:

- рынок бензина А-80 и мазута практически неограничен.

Одной из главных задач на Саратовском нефтеперерабатывающем заводе является рациональное использование природных и энергетических ресурсов, а также материалов, реагентов, полуфабрикатов и готовой продукции необходимых для ведения технологического процесса.

В ходе изучения технологической схемы и потоков нефтепродуктов на установке висбрекинг было выявлено не рациональное использование регенерации тепла циркуляционного орошения (лёгкого газойля, фракция 350-420°С) колонны К-101.В целях экономии энергоресурсов было предложено:

1. Установка висбрекинга гудрона предназначена для получения из гудрона компонента котельного топлива и светлых нефтепродуктов.

2. Процесс висбрекинга - умеренный термический крекинг тяжелых нефтяных остатков с целью снижения их вязкости.

Сырье секции висбрекинга – гудрон, получаемый на блоке вакуумной перегонки мазута установки ЭЛОУ-АВТ-6 при переработке смеси нефтей, поступающих на Саратовский нефтеперерабатывающий завод.

Целевым продуктом является остаток висбрекинга – компонент котельного топлива.

Кроме целевого продукта с установки выводятся:

- очищенный углеводородный газ;

- стабильный бензин (фракция НК-195 оС);

- легкий газойль висбрекинга;

3. Секция висбрекинга состоит из следующих технологических стадий (блоков и узлов):

-узел висбрекинга гудрона, включающий трубчатую печь и ректификационную колонну для разделения продуктов крекинга;

-блок физической стабилизации бензиновой фракции;

-блок очистки газов висбрекинга от сероводорода 15%-ным раствором моноэтаноламина (МЭА);

-узел утилизации тепла.

 4. Технология процесса висбрекинга разработана научно-производственной фирмой ПАУФ. Генеральный проектировщик - ГУП “БАШГИПРОНЕФТЕХИМ” г. УФА.

Производительность установки - переработка 800 тыс. т. гудрона в год.

Число часов работы установки в году – 8400 (350 суток).

Год ввода установки в эксплуатацию – 2004 г.

 









Дата: 2019-07-31, просмотров: 268.