Введение.
Уже при кратком знакомстве с молекулярными основами жизни мы сталкиваемся с липидами. Назовем их основные биологические свойства:
· Главные компоненты биологических мембран;
· Запасной, изолирующий и защищающий органы материал;
· Наиболее калорийная часть пищи;
· Важная составная часть диеты человека и животных;
· Переносчики ряда витаминов;
· Регуляторы транспорта витаминов и солей;
· Иммуномодуляторы;
· Регуляторы активности некоторых ферментов;
· Эндогормоны;
· Передатчики биологических сигналов.
Этот список увеличивается по мере изучения липидов. В обеспечении названных и других функций участвуют липиды различной структуры в разных количествах: тонны триглицеридов служат китам как запас энергии и защита тела от внешних воздействий, а как эндогормоны или передатчики биологических сигналов действуют липиды других классов в микро- и нанограммовых дозах. Поэтому для понимания сути многих биологических процессов нужно иметь представления о переваривании и всасывании липидов, об их транспорте и синтезе в организме.
Определение класса липидов, их классификация и
Биологическое значение .
В учебнике по общей химии под редакцией Ю. И. Полянского сказано: “Липиды представляют собой органические вещества, нерастворимые в воде, но растворимые в бензоле, эфире, ацетоне.” Сходные определения липидов чаще всего встречаются и в одном из лучших руководств по биохимии. Они имеют два существенных недостатка: во – первых, вместо четкой химической характеристики класса говорят о физических свойствах липидов, во – вторых, содержат фактические ошибки. Так, далеко не все липиды растворимы в перечисляемых органических растворителях. Н. Грин с соавторами, с одной стороны критикуют подобные определения, но с другой – не доводят дело до конца: “ Можно все же сказать, что настоящие липиды – это сложные эфиры жирных кислот и какого – либо спирта”. Как мы увидим, помимо сложных эфиров спиртов есть много других липидов. Неправильные определения влекут за собой запутанные, неверные классификации . В число липидов часто включают стерины, жирорастворимые витамины и другие соединения. Мы будем относить к липидам вещества с четко выраженной химической структурой, тесно связанные биохимически: липиды – это жирные кислоты и их производные.
Что такое жирные кислоты? Из органической химии известно, что это алифатические монокарбоновые кислоты R – СООН. Как и для других классов природных соединений, определение наполнится глубоким содержанием после знакомства с главными представителями липидов [1, 1997].
Липиды разделяются на две группы по принципу гидролитического расщепления. Первая – липиды, не подвергающиеся гидролизу. К ним можно отнести некоторые углеводороды , например, сквален и картиноиды, высшие спирты, включая стерины, и высшие аминоспирты, высшие альдегиды, кетоны и хиноны ( витамины группы К, убихинон и т.д. ) , жирные кислоты (ЖК) и простогландины (ПГ). Во вторую группу включены липиды, гидролиз которых приводит к “освобождению” двух и более индивидуальных соединений. В эту группу входят в основном вещества, содержащие сложноэфирную и / или амидную связи, а также связь типа простого эфира, ацеталя или полуацеталя. Это – воски, эфиры стеринов, в том числе холестерина (ХС) и многоатомных спиртов (например, глицериды, фосфолипиды (ФЛ), включая сфиегомиелины ), гликолипиды, серусодержащие липиды и липиды, имеющие в своем составе аминокислоты.
Если оставить в стороне ряд соединений, которые по отдельным признакам подходят к определению “липиды” или являются их предшественниками (например , жирные кислоты, сквален и др.) или производными (например, ПГ), то можно использовать следующую классификацию липидов, основанную на их структурных особенностях:
n глицериды;
n воски;
n ФЛ: глицерофосфолипиды , сфингомиелины;
n гликолипиды (гликосфинголипиды) : цереброзиды и ганглиозиды ;
n другие сложные липиды ( сульфолипиды и аминолипиды);
n стерины и их эфиры с ЖК.
Биологическое значение.
Воска: У позвоночных воски, секретируемые кожными железами, выполняют функцию защитного покрытия, смазающего и смягчающего кожу и предохраняющего ее от воды. Восковым секретом покрыты даже волосы. Перья птиц , особенно водоплавающих, и шкура животных имеют восковое покрытие, которое придает водоотталкивающие свойства. Воск овечьей шерсти, называемый линолином, в качестве спиртовой компоненты содержит ланостерин – один из конечных продуктов биосинтеза холестерина. Ланолин широко используется в медицине и косметике как основа для приготовления различных мазей и кремов.
Цереброзиды обнаруживаются главным образом в миелиновых оболочках и в мембранах нервных клеток мозга.
Ганглиозиды: Они найдены в сером веществе головного мозга. Локализованы в плазматических мембранах нервных клеток, где на их долю приходится около 6 % мембранных липидов. В меньшем количестве они обнаружены в мембранах клеток других тканей. Показано участие ганглиозидов в формировании защитного слоя клеток – гликокаликса и в осуществлении ими рецепторной функции.
ФЛ обнаружены в составе тканей и клеток всех живых существ, как в свободном виде, так и в виде белково – липидных комплексов (липопротеидов и протеолипидов) . Особенно много ФЛ содержится в оболочках и мембранах клеток и клеточных органелл (ядра, митохондрий и микросомах), где они образуют структурную основу мембраны – фосфолипидный бислой. Наиболее богаты ФЛ ткани мозга и нервов (до 30 % в пересчете на сухую массу ткани), печень(до 16 %), почки(до11%), сердце(до 10 %), скелетные мышцы (около 3 %). В плазме крови человека содержится 2,8 – 4,4 ммоль / л ФЛ.
Всюду, где содержатся ФЛ им сопутствует холестерин. Поэтому эти липиды иногда называют комплементарными.
Стерины и их эфиры с жирными кислотами: Наиболее важным представителем этого класса соединений является ХС. Каждая клетка в организме млекопитающих содержит ХС входя в состав мембранных клеток , НЭХС вместе с ФЛ и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней энзимов.
ХС является источником образования в организме млекопитающих желчных кислот, а также стероидных гормонов: тестостерона, эстрадиола, прогестерона, кортизоном, альдестерона. ХС, а точнее продукты его окисления 7-дегидрохолестерин, в результате воздействия УФ-лучей на кожу превращается в ней в витамин D3. Таким образом физиологическая функция ХС многообразна [5,1999].
Глицериды. ТГ составляют основную массу резервных липидов человеческого организма. Они выполняют резервную функцию, причем это преимущественно энергетический резерв организма. У человека массой 70 кг на долю резервных липидов приходится примерно 11 кг. Учитывая калорический коэффициент для липидов, равный 9,3 ккал/г, общий запас энергии в резервных ТГ составляет величину порядка 100000 ккал. Функция резервных ТГ как запаса пластического материала не столь очевидна, но все же продукты расщепления ТГ могут использоваться для биосинтезов, например, входящий в их состав глицерол может быть использаван для синтеза глюкозы или некоторых аминокислот.
Являясь одним из основных компонентов жировой ткани, ТГ участвуют в защите внутренних органов человека от механических повреждений. Кроме того , входя в большом количестве в состав подкожной жировой клетчатки, они участвуют втерморегуляции, образуя теплоизолирующую прослойку [6, 1999].
Липопротеиды.
Строение и химический состав.
Исходя из современных представлений, само понятие “липопротеиды” можно определить следующим образом: липопротеиды (ЛП) – высоко молекулярные водорастворимые частицы, представляющие собой комплекс белка и липида, образованный нековалентными связями, в котором белки совместно с полярными липидами формируют поверхностный гидрофильный слой, окружающий и защищающий внутреннюю гидрофобную липидную сферу от водной сферы и обеспечивающий транспорт липидов в кровяном русле и доставку их в органы и ткани. Согласно этому определению, одним из признаков ЛП является наличие в них наружного гидрофильного белково – липидного слоя и липидной гидрофобной сферы (ядра).
Плазменные ЛП-частицы имеют сферическую форму. Внутри находится жировая капля, содержащяя неполярные липиды (триглицериды и эстерефицированный холестерин) и формирующая ядро ЛП-частицы. Оно окружено оболочкой из ФЛ, НЭХС и белка. Целесообразность такой структуры объясняется тем, что неполярные липиды нерастворимы в водной среде и поэтому не могут транспортироваться в ток крови. Полярные же липиды (ФЛ, НЭХС) совместно с белком формируют поверхностный гидрофильный слой, который с одной стороны, защищает внутреннюю гидрофобную липидную сферу от водной среды, а с другой – обеспечивает растворимость и транспорт ЛП-частицы в этой же водной среде. ФЛ и НЭХС покрывают только 30 – 70 % поверхности частицы, остальную ее часть восполняет белок.
Основную массу ЛП-частицы составляет ее ядро, в котором помимо ТГ и ЭХС, обнаруживаются небольшие количества НЭХС. Именно ядро частицы определяет ее размеры и сферическую форму. В зависимости от класса ЛП изменяется соотношение между основными липидами: с увеличением плотности частиц уменьшается доля ТГ и возрастает доля ЭХС. Поскольку ТГ являются растворителями для последних, то в богатых ТГ липид – белковых комплексах (ХМ и ЛПОНП) эфиры ХС равномерно распределены по ядру, тогда как в ЛПНП и ЛПВП они образуют отдельные скопления. Образно , к ядру ЛП-частицы можно употребить выражение “липиды внутри липида ”. Наружная оболочка ЛП-частицы, в отличии от ядра, обладает относительно высокой электронной плотностью. Толщина этой оболочки составляет 2,1 – 2,2 нм, что соответствует половине толщины липидного бислоя клеточных мембран. Отсюда было сделано заключение , что в плазменных ЛП наружная оболочка, в отличии от клеточных мембран, содержит липидный монослой. ФЛ, а также НЭХС расположены в наружной оболочке таким образом, что их полярные группы ориентированны наружу, а гидрофобные жирно – кислотные “хвосты” – внутрь частицы, причем какая-то часть этих “хвостов” даже погружена в липидное ядро.
По всей вероятности , наружная оболочка ЛП представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка и , возможно, НЭХС. Именно такая структура делает ЛП-частицу менее обособленной по сравнению с клеткой, окруженной бислойной мембраной, и объясняет легкую подвижность НЭХС (в меньшей степени белка и ФЛ) и способность этих компонентов переходить из одного класса ЛП на другой, даже сердцевинно-расположенные ЭХС и ТГ могут переходить из ЛП-частиц одной плотности на ЛП-частицы другой.
Существует много различных схем строения ЛП-частицы. Предполагается , что входящие в ее состав белки занимают только часть наружной оболочки. На основании данных , полученных при изучении переноса энергии с остатков белка одного из классов ЛП (ЛПНП) на гидрофобный слой пирен , было сделано заключение, что глубина погружения триптофанилов в фосфолипидный монослой составляет всего лишь 1,16 ± 0,26 нм. Вместе с тем, допускается, что значительная часть каждой белковой молекулы погружены в ЛП-частицу глубже, чем толщина ее наружной оболочки. В целом положение белков в ЛП-частице напоминает картину белкового “айсберга”, плавающего в “липидном море”, предложенную ранее для объяснения структуры клеточных мембран.(рис. 1)
Схема строения ЛП-частицы имеет сходство со структурой плазматической мембраны. Некоторое количество ЭХС и ТГ (не показано) содержится в поверхностном слое, а в ядре частицы имеется небольшое количество НЭХС.
Такая структура может обеспечивать непосредственный контакт белковых молекул с липидами. Отдельные белки (апопротеины), входящие в состав ЛП , выполнят коэнзимную функцию в таких реакциях , как эстерификация ХС и гидролиз ТГ, протекающих непосредственно на ЛП-частице. Это требует прямого контакта липидов с апопротеинами и соответствующими энзимами [5, 1999]. Апопротеины обеспечивают растворимость ЛП и (благодаря их сигнальной роли) определяют пути метаболизма и судьбу каждого класса ЛП-частиц [3, 2000].
Липиды оболочки ЛП-частицы обладают более высокой микровязкостью, чем липиды ядра. Микровязкость липидов увеличивается , если в оболочке увеличивается содержание НЭХС, а в сердцевине – содержание ЭХС и ТГ с насыщенными ЖК. Увеличение микровязкости липидов может наблюдаться при скармливании животным ХС, а ее снижение – при содержании на диете , богатой полиненасыщенными ЖК. Микровязкость липидов , особенно оболочки ЛП-частицы , играет определенную роль в ее взаимодействии с мембраной клеток. В целом интегральность структуры ЛП-частицы обеспечивается гидрофобными , и в большей степени, ионными связями; при этом имеют место следующие взаимодействия: липид – липид, липид – белок, белок – белок.
В связи с тем, что плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых связи между компонентами комплекса носят нековалентный характер, применительна к ним вместо слова “молекула” употребляют выражение “частица”.
Классификация ЛП.
Существует несколько классификаций ЛП, основанных на различиях в их свойствах: гидратированной плотности, скорости флотации, электрофлоретической подвижности, а так же на различиях в апопротеиновом составе. Наибольшее распространение получила классификация, основанная на поведении отдельных ЛП в гравитационном поле в процессе ультрацентрифугирования. Гидратированная плотность ЛП колеблется в пределах 0,93 – 1,16 гр ¤ мл, что ниже гидратированной плотности плазменных белков, не связанных с липидами. Поэтому при ультрацентрифугировании в растворах с солевой плотностью, равной 1,21 или 1,25 г ¤ мл, ЛП всплывают, а белки, неассоциированные с липидами, остаются в инфрантанте.
При аналитическом ультрацентрифугировании разделения ЛП на фракции основано на скорости их флотации при плотности раствора 1,063 г¤мл для ХМ (Sf >400), ЛПОНП (Sf 20 – 400),и ЛПНП (Sf 0 – 20) и при плотности равной 1,20 г/мл для ЛПВП.
Различная электрофоретическая подвижность по отношению к глобулинам плазмы положена в основу другой классификации ЛП согласно которой различают ХМ (остаются на старте подобно g-глобулинам), b-ЛП (ЛПНП), пре-b-ЛП (ЛПОНП) и a-ЛП (ЛПВП), занимающие положение b-, a1-, a2-глобулинов соответственно.
Приведенные выше классификации не учитывают то обстоятельство, что каждый из классов ЛП отличается большой дисперсностью и гетерогенностью. Последнего недостатка в значительной степени лишена так называемая химическая классификация ЛП, основанная на оценке состава апопротеинов как специфических маркеров для рассматриваемых липид – белковых комплексов.
Данный подход и классификация ЛП предусматривает деление всех ЛП на первичные и вторичные (ассоциированные комплексы). К первичным относятся такие ЛП, которые содержат один индивидуальный белок – апопротеин (например, ЛП В-100, ЛП С-I, ЛП С-II и т.д.). Ко вторым ЛП относят ассоциаты первичных ЛП (например,ЛП А-I : А-II, ЛП А-II:В:С:D:Е).
Характерно, что доля ассоциированных комплексов чрезвычайно высока у ХМ и ЛПОНП и очень низка у ЛПВП, т.е. способность к образованию комплексов уменьшается с увеличением плотность ЛП.
Следует остановиться еще на одном подходе в разделении ЛП, учитывающем преобладание в них того или иного белка или липида. Согласно этому подходу, выделяют апо А- и апо В-содержащие ЛП, а также ЛП, богатые ТГ, ХС, ФЛ.
К ЛП, богатым ТГ относятся ХМ и ЛПОНП, ЛП , богатые ХС – это ЛПНП и ЛП ,богатые ФЛ – ЛПВП.
Состав и физико-химические свойства ЛП плазмы крови человека, богатых ТГ или ХС.[Климов, 1999]
Показатели | ХМ | ЛПОНП | ЛПНП1 | ЛПНП2 |
Средняя гидратированная плотность частиц, г / мл | 0,93 | 0,97 | 1,012 | 1,035 |
Границы солевой плотности для выделения , г / мл | 1,006 | 1,006 | 1,006 – 1,019 | 1,019 – 1,063 |
Диаметр частицы , нм | >100 | 25 - 75 | 22 - 24 | 19 – 23 |
ММ * 10-6, Да | 500 | 5 - 13 | 3,9 – 4,8 | 2,7 – 4,0 |
Скорость флотации, Sf | > 400 | 20 - 400 | 12 - 20 | 0 - 12 |
Средний поверхностный потенциал, мВ | 0 | -7 | -7 | -7 |
Подвижность в электрическом поле | остаются на старте | пре - b | b | b |
Химический состав ЛП, % ТГ Белки ХС общий % ЭХС ФЛ | 80 – 95 1 – 2 0,5 – 3 46 3 - 9 | 50 – 70 5 – 12 15 – 17 57 13 - 20 | 24 – 34 14 – 18 35 – 45 66 11 - 17 | 5 – 10 20 – 25 45 – 48 70 20 - 30 |
Основные апопротеины | В-48,С,Е,А | В-100,С,Е | В-100,С | В-100 |
Содержание в плазме крови взрослых лиц натощак, мг/дл | след | 50 - 200 | 10 - 50 | 200 – 300 |
Что переносят | ТГ пищи | Эндоген- ные ТГ | ЭХС, ТГ | ХС, ЭХС |
Состав и физико-химические свойства ЛП плазмы крови человека, богатых ФЛ [Климов, 1999].
Показатели | Общая фрак- ция ЛПВП | ЛПВП2 | ЛПВП3 | ЛПОВП |
Средняя гидратированная плотность частиц, г / мл | 1,130 | 1,090 | 1,150 | 1,230 |
Границы солевой плотности для выделения, г / мл | 1,063 – 1,25 | 1,08-1,125 | 1,125-1,21 | 1,21-1,25 |
Диаметр частицы, нм | 6 - 12 | 7 - 12 | 6 - 7 | 7 |
ММ * 10-5, Да | 1,5 – 4,0 | 3,60 – 3,86 | 1,48 – 1,86 | 1,5 |
Скорость флотации (Sf) | 0 - 9 | 3,5 – 9,0 | 0 – 3,5 | ¾ |
Химический состав ЛП, % Белки ХС общий % ЭХС ФЛ ТГ | 45– 55 20– 27 78 2 – 40 3 - 5 | 33 – 41 18 – 28 74 30 – 42 4 - 8 | 45 – 59 12 – 25 81 23 – 30 2 - 6 | 62 3 90 28 5 |
Основные апопротеины | А-I, А-II | А-I, А-II | А-I, А-II | ? |
Содержание в плазме крови взрослых лиц натощак, мг/дл мужчины / женщины | 170 –350 220 - 470 | 50 – 120 70 - 200 | 120 –230 150 -270 | ~ 20 ~ 20 |
Что переносят | ХС,ЭХС ФЛ | ЭХС, ФЛ |
Рис.2.
Роль ЛП.
ЛП плазмы крови являются уникальной транспортной формой липидов в организме человека и животных. Они осуществляют транспорт липидов как экзогеного (пищевого) происхождения, так и заново синтезируемых в печени и стенке тонкой кишки (т.е. эндогенного происхождения) в систему циркуляции и далее к местам утилизации или депонирования . Уже одного этого было достаточно, чтобы представить важную роль ЛП в жизнедеятельности организма. Вместе с тем нам известно теперь, что отдельные ЛП осуществляют “захват” избыточного ХС из клеток переферических тканей и его “обратный” транспорт в печень для окисления в желчные кислоты и выведение с желчью . Наконец, ЛП осуществляют транспорт жирорастворимых витамиов, гормонов и других биологически активных веществ. Среди них следует отметить соединения, в отношении липидов антиоксидантной активностью: a- ,g- токоферолы, a - и b - каротины, убихинон и т.д. Основными липидами , транспортируемыми в токе крови в составе липопротеидных комплексов, являются ТГ, НЭХС, ЭХС, ФЛ и небольшое количество НЭЖК. Основная масса НЭЖК транспортируется альбуминами крови [5,1999].
Наследственная недостаточность ЛП.
Существуют 3 редких вида наследственной недостаточности ЛП.
Абеталипопротеинемия. При абетолипопротеинемии имеется дефект синтеза апо-В, в плазме отсутствуют ХМ, ЛПОНП, ЛПНП. Клинически оно проявляется мальабсорбцией жиров, акантоцитозом, пигментным ретинитом и атаксической невропатией.
Гипобеталипопротеинемия. При этом состоянии наблюдается частичная недостаточность апо-В; ХМ, ЛПОНП и ЛПНП присутствуют, но в низких концентрациях.
Болезнь Танжье. При этой патологии снижена концентрация ЛПВП. Клинически это состояние характеризуется гиперпластическим, оранжевыми миндалинами и аккумуляцией эфиров ХС в других ретикулоэндотелиальных тканях. Патология связана с ускоренным катаболизмом апо А-I [8, 2000].
Эмульгирования, значение.
Все ферменты, принимающие участие в гидролизе пищевых липидов растворены в водной фазе содержимого тонкого кишечника и могут действовать на молекулы липидов лишь на границе раздела липид/вода. Отсюда , для эффективного переваривания липидов необходимо увеличение этой поверхности с тем, чтобы большее количество молекул ферментов участвовало в катализе. Увеличение площади поверхности раздела достигается за счет эмульгирования пищевых липидов – разделение крупных липидных капель пищевого комка на мелкие. Для эмульгировани необходимы поверхностно-активные вещества – ПАВы , представляющие собой амфифильные соединения , одна часть молекулы которых гидрофобна и способна взаимодействовать с гидрофобными молекулами поверхности липидных капель, а вторая часть молекулы ПАВов должна быть гидрофильной, способной взаимодействовать с водой. При взаимодействии липидных капель с ПАВами снижается величина поверхностного натяжения на границе раздела липид/вода и крупные липидные капли распадаются на более мелкие с образованием эмульсии. В качестве ПАВов в тонком кишечнике выступают соли ЖК и продукты неполного гидролиза триацилглицеринов или ФЛ, однако основную роль в этом процессе играют желчные кислоты [6, 1999].
Они поступают в двенацатиперстную кишку с желчью в виде коньюгатов с глицином или таурином (гликохолевая, таурохолевая, гликохенодезоксихолевая, таурохенодезоксихолевая кислоты). У человека отношение глициновых коньюгатов к тауриновым составляет примерно 3:1.
В двенацатиперстную кишку вместе с пищевой массой заносится некоторое количество желудочного сока, содержащего соляную кислоту, которая в двенацатиперстной кишке нейтрализуется в основном бикарбонатами, содержащимися в панкреатическом соке и желчи. Образующиеся при разложении бикарбонатов пузырьки углекислого газа разрыхляют пищевую кашицу и способствуют более полному перемешиванию ее с пищеварительными соками. Одновременно начинается эмульгирование жира (ТГ). Соли желчных кислот адсорбируются в присутствии небольших количеств свободных ЖК и МГ на поверхности капелек жира в виде тончайшей пленки, препятствующей слиянию этих капелек. Кроме того , соли желчных кислот способствуют расчленению больших капелек жира на меньшие. Создаются условия для образовании тонкой и устойчивой жировой эмульсии с размером частиц 0,5 мкм и меньше. В результате эмульгирования резко увеличивается поверхность жиров, что облегчает взаимодействие их с липазой, т.е. ускоряет ферментативный гидролиз [5, 1999].
Расщепление липидов.
Триглицериды.
В организм взрослого человека с пищей ежесуточно поступает 60 – 80 г жиров (ТГ) животного и растительного происхождения. Из этого количества подавляющая часть (более 85%) подвергается расщеплению в желудочно-кишечном тракте.
В полости рта ТГ не подвергаются никаким изменениям, так как слюна не содержит расщепляющих их ферментов. С желудочным соком выделяется липаза, получившая название желудочной, однако роль ее в гидролизе пищевых ТГ у взрослых людей не велика. Во–первых, в желудочном соке взрослого человека и других млекопитающих содержание липазы крайне низкое. Во-вторых, рН желудочного сока от оптимума действия этого фермента (оптимальное значение рН для желудочной липазы находится в пределах 5,5 – 7,5). В-третьих , в желудке отсутствуют условия для эмульгирования ТГ, а липаза может активно действовать только на ТГ, находящихся в форме эмульсии. Поэтому у взрослых людей неэмульгированные ТГ, составляющие основную массу пищевого жира, проходят через желудок без особых изменений.
Вместе с тем расщепление ТГ в полости желудка играет важную роль в пищеварении у детей, особенно грудного возраста. Умеренная кислотность желудочного сока у них ( рН около 5) способствует перевариванию эмульгированных ТГ молока желудочной липазой. Кроме того, при употреблении молока в качестве основного продукта питания возможно адаптивное усиление синтеза желудочной липазы.
Исследованиями М.Hmosh и соавт. Было показано, что слизистая оболочка корня языка и примыкающей к нему области глотки грудного ребенка секретирует свою собственную липазу в ответ на сосательные и глотательные движения при кормлении грудью. Эта липаза получила название лингвальной. Активность лингвальной липазы не успевает проявиться в полости рта, и основным местом ее действия является желудок. Оптимум рН лингвальной липазы лежит в пределах 4 – 4,5; он близок к величине рН желудочного сока у грудных детей. Лингвальная липаза наиболее активно действует на ТГ, содержащие ЖК с короткой и средней длиной цепи, что характерно для ТГ молока. Можно сказать, что жир молока – самый подходящий субстрат для этого энзима. Лингвальная липаза преимущественно расщепляет эфирную связь в sn – 3 положении ТГ,
в результате чего образуются 1,2(a, b)- ДГ и ЖК. ЖК с короткой цепью всасываются непосредственно в желудке, а длинноцепочечные вместе с ДГ поступают в тонкую кишку. Активность лиигвальной липазы у взрослых крайне низкая.
Очень близок по своим свойствам к лингвальной липазе энзим, секретируемый слизистой оболочкой гортани у новорожденных и получивший название преджелудочной липазы. Функция его та же , что и лингвальной липазы. Все три липазы (лингвальная, преджелудочная и желудочная), гидролизуя сложноэфирную связь преимущественно в sn-3 положении триглицерида, действуют на ФЛ и ЭХС.
Несмотря на то , что расщепление ТГ в желудке взрослого человека невелико, оно в какой-то степени облегчает последующее переваривание их в кишечнике. Даже незначительное по объему расщепление ТГ в желудке приводит к появлению свободных ЖК, которые, не подвергаясь всасыванию в желудке, поступают в кишечник и способствуют там эмульгированию жиров, облегчая, таким образом, воздействия на них липазы панкреатического сока. Кроме того, появление длинноцепочечных ЖК в двенацатиперстной кишке стимулирует секрецию понкреатической липазы.
Основная масса пищевых ТГ подвергается расщеплению в верхних отделах тонкой кишки при действии липазы панкреатического сока. Панкреатическая липаза является гликопротеидом, имеющим ММ 48 кДа ( у человека) и оптимум рН 8 – 9 . Она расщепляет ТГ, находящиеся в эмульгированном состоянии (действие ее на растворенные субстраты значительно слабее).Фермент катализирует гидролиз эфирных связей в a-,a1- положениях, в результате чего образуется b-МГ и освобождаются две частицы ЖК. Это отличает панкреатическую липазу от лингвальной, преджелудочной и желудочной липаз, при действии которых освобождается только одна ЖК.
Панкреатическая липаза , как и другие пищеварительные ферменты (пепсин, трипсин и химотрипсин), поступает в верхний отдел тонкой кишки в виде неактивной пролипазы. Превращение пролипазы в активную липазу происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы. Колипаза секретируется в виде проформы – проколипазы , и для ее превращения в активную колипазу требуется гидролиз специфических пептидных связей, который происходит при действии трипсина поджелудочного сока. Образовавшаяся активная колипаза образует с липазой комплекс в молярном отношении 1:1 за счет формирования двух ионных связей Lys – Glu и Asp – Arg. Образование такого комплекса приводит к тому, что липаза становится активной и устойчивой к действию трипсина.
Итак, основные продукты расщепления ТГ при действии панкреатической липазы - b-МГ и ЖК. На скорость катализируемого липазой гидролиза ТГ не оказывают существенного влияния ни степень ненасыщенности ЖК, ни длина ее цепи (С12 – С18).
Во время триптического гидролиза проколипазы освобождается пентапептид, названный энтеростатином, функция которого еще до конца невыяснена, но установлено, что, всасываясь в кровь, он угнетает аппетит:
Val – Pro – Asp – Pro – Arg
энтеростатин
Другими словами, энтеростатин можно рассматривать как своеобразный “кишечный гормон”, вызывающий чувство сытости при приеме и переваривании жирной пищи.
В панкреатическом соке , наряду с липазой, содержится моноглицеридная изомераза – фермент, катализирущий внутримолекулярный перенос ацила из b-положении МГ превращается в a-положение. В процессе переваривания пищевых жиров при участии этого фермента примерно 1/3 b-МГ превращается в a-МГ. Поскольку эфирная связь в a-положении глицерида чувствительна к действию панкреатической липазы, последняя расщепляет большую часть a-МГ до конечных продуктов – глицерина и ЖК (рис. 3). Меньшая часть a-МГ успевает всосаться в стенку тонкой кишки, минуя воздействие со стороны липазы.
Фосфолипиды.
Подавляющая часть ФЛ содержимого тонкой кишки приходится на фосфотидилхолин (лецитин), основная масса которого поступает в кишечник с желчью (11 – 12 г/сут) и меньшая (1 –2 г/сут) – с пищей.
Столь значительная разница в количествах экзогенных и эндогенных ФЛ, находящихся в тонкой кишке, послужила основанием для высказывания двух точек зрения относительно дальнейшей их судьбы. Согласно одной из них, и те, и другие ФЛ подвергаются в кишечнике атаке со стороны фосфолипазы А2, катализирующей гидролиз сложноэфирной связи в b-положении ФЛ. Фосфолипаза А2 выделяется в кишечник с панкреатическим соком в виде неактивного проэнзима и при воздействии на нее трипсина и ионов кальция превращается в активный энзим. В результате катализируемой фосфолипазой А2 реакции глицеро-ФЛ расщепляются с образованием лизофосфолипида (лизо-ФЛ) и ЖК. Для протекании этой реакции требуются соли желчных кислот. Таким образом, согласно приведенной точке зрения, судьба экзогенных и эндогенных ФЛ одна и та же. Авторы другой точке зрения считают, что ФЛ “желчного”(более того ,печеночного) происхождения, в отличии от пищевых ФЛ, не подвергаются воздействию фосфолипазы А2. При этом подчеркивается, что функция “желчных” ФЛ исключительно связана с гепатоэнтеральной циркуляцией желчи: с желчью они поступают в кишечник, с желчными кислотами участвуют в мицеллярной солюбилизации липидов и вместе с ним же возвращаются в печень. Таким образом, существуют как бы два пула ФЛ в кишечнике – “желчный” , защищенный от действия фосфолипазы, и “пищевой”, подверженный ее действию. Пока мы не можем объяснить причину существования двух пулов ФЛ и их различное отношение к действию фосфолипазы.
Образующиеся при действии фосфолипазы А2 лизо-ФЛ является хорошим ПАВом, и поэтому он способствует эмульгированию пищевых жиров и образованию смешанных жировых мицелл. Вместе с тем какая-то часть лизо-ФЛ может подвергаться расщеплению при действии другого фермента панкреатического сока – лизофосфолипазы, катализирующей гидролиз сложноэфирной связи в a-положении. В результате из лизолецитина освобождается последняя частица ЖК и образуется глицерилфосфохолин, который хорошо растворяется в водной среде и всасывается из кишечника в кровь.
СН2–О–СО–R1 СН2–О–СО–R1
½ Н2О R2СООН ½ Н2О R1СООН
СН–О–СО–R2 ¾¾¾¾¾¾¾® СН–ОН ¾¾¾¾¾¾¾®
½ фосфолипаза А2 ½ ФОСФОЛИПАЗА А1
СН2–О–Р–О–СН2СН2N(CН3)3 СН2–О–Р–СН2СН2N(СН3)3
фосфотидилхолин лизофосфотидилхолин
СН2 – ОН
½
¾¾¾¾® СН – ОН
½
СН2 – О – Р – СН2СН2N(СН3)3
глицерилфосфохолин
Из других представителей ФЛ сфингомиелин всасывается в тонкой кишке в виде интактных молекул.
Холестерин.
В зависимости от рода пищи в организм взрослого человека вводится ежедневно 300 – 500 мг ХС ,содержащегося в пищевых продуктах частично в свободном (неэстерефицированном) виде, частично в виде эфиров с ЖК. Последние расщепляются на ХС и ЖК особым ферментом панкреатического сока – гидролазой ЭХС , или холестеринэстеразой. Активность фермента проявляется в присутствии желчных кислот [5,1999].
Образование и обмен хиломикронов, значение.
Хиломикроны (ХМ) известны с 1774 г., когда английский врач У. Хьюсон обнаружил белесоватый вид крови при кровопускании и установил, что причиной этого является абсорбционная липемия. В 1920 г. С. Кейдж локализовал ХМ под микроскопом после приема жирной пищи, как “танцующие в сыворотки частицы, диаметром в несколько раз меньше эритроцитов” и дал им современное название [3, 2000].
Основной функцией ХМ является транспорт экзогенных, поступающих с пищей ТГ, которые составляют до 90% липидных компонентов этих липопротеиновых частиц. Образование ХМ происходит в энтероцитах поверхностного слизистого слоя кишечника и зависит во многом от количества потребляемых жиров и характера содержащихся в них ЖК. Способность стенки кишечника синтезировать ХМ проявляется только при наличии высших ЖК с числом атомов углерода не менее 12. В таком случае главные продукты гидролиза плазмы – ЖК , 2-моноглицериды и диглецериды поступают путем диффузии (энергозависимый процесс) в энтероциты, где происходит ресинтез ТГ на гладком эндоплазматическом ретикулуме в апикальной части клеток. При наличии в пище ТГ с ацилами короткой длины ХМ не образуются , а ЖК после всасывания в кишечнике поступают в кровь воротной вены печени, не попадая в лимфатическую систему. Электронномикроскопические исследования позволяют выявить осмиофильные включения – предшественники ХМ – в цитоплазме энтероцитов и проследить их перемещение от гладкого эндоплазматического ретикула к аппарату Гольджи в супроядерную часть клетки. Возможно, аппарат Гольджи ответственен за присоединение углеводных компонентов к апапротеинам липопротеиновых частиц. Из аппарата Гольджи сформированные частицы ХМ перемещаются в составе везикул к плазмолемме , где посредством экзоцитоза покидают клетку и переходят в межклеточное пространство , а далее – в лимфу.
Секретируемые в лимфу ЛП-частицы претерпевают ряд превращений до их окончательного формирования в ХМ, наблюдаемые в токе крови. указанные изменения заключаются во взаимообмене отдельных апопротеинов, в первую очередь с ЛПВП. Показано , что при взаимодействии ХМ с ЛПВП2 с последних переходят на ХМ апо-ЛП С и Е , в то время как апо-ЛП А-IV покидают Хми участвуют в формировании в сосудистом русле ЛПВП. Природа таких перемещений заключается в большем сродстве апо-ЛП С к поверхностным слоям триглицерид-обогащенных липопротеиновых комплексов и в его более высокой поверхностной активности (рис. 4) [12,1990].
Ключевую роль в сборке частиц играет апопротеин В48. В них также широко представлены апопротеины С I – III и имеют апопротеины А I – II кишечного и печеночного происхождения. Однако, свежесекретированные частицы ХМ, практически, лишены апопротеинов С и А и приобретают их в результате контакта с челночными ЛПВП уже в плазме крови.
ХМ – это первый транспортер экзогенных пищевых липидов, прежде всего, ТГ, на пути через лимфу крови. Их метаболические превращения известны как экзогенный путь кругооборота ЛП.
С кровью ХМ переносятся, в первую очередь, в правое сердце и легкие, а затем в большой круг кровообращения. При этом они все время теряют значительные количества ТГ за счет липопротеид-липолиза и их гидрофобное ядро заметно “худеет”. ХМ превращаются в остаточные частицы , в которых ФЛ, ХС и апопротеины находятся в относительном избытке. На поверхности похудевшей частицы ХМ возникают складки избыточной оболочки, которые могут отрываться от частицы , замыкаться в особые малые богатые фосфолипидами и апопротеинами С, Е и А “насцентные диски” и служат затем основой для наполнения гидрофобными липидами и образования ЛПВП. Механизм эффекта , обеспечивающего просветление липемической плазмы, которое интенсивно идет уже в первые 15 минут и за 12 – 14 ч после приема жирной пищи полностью убирает из плазмы ХМ, обеспечивается ферментом липопротеиновой липазой (ЛПЛ). Этот энзим капиллярной стенки и освобождается в плазму в ответ на жировую нагрузку и гепарин. Наибольшую липолитическую активность проявляют капилляры жировой ткани , легких и сердца, кроме того ЛПЛ выделяется в печени , селезенке, почках, лактирующей молочной железе и диафрагме. Очевидно , что это связано с интенсивным отложением ТГ в адипоцитах, с секрецией липидной эмульсии в молоко и с энергетикой миокарда и диафрагмы, использующих в топливных целях много ЖК. Любопытно , что в легких процесс частичного метаболизма ХМ играет ключевую роль для обеспечения высокой активности альвеолярных макрофагов и существенно необходим для синтеза ФЛ сурфактанта. В связи с этим , при легочных инфекциях благотворно действует жировая диета. Еще народные знахари применяли барсучий и медвежий жир и собачье сало при чахотке. Такая процедура, как искусственный лечебный пневмоторакс , опосредует свой эффект не только через возникающую в спавшемся легком венозную гиперемию и усиление фибропластических процессов. Известное значение имеет и усиление недыхательных функций легких при снижении вентиляции. Традиционное питание северных народов , находящихся под воздействием климатических факторов повышенного риска бронхита и пневмонии , не случайно богато жирами. Эта особенность экологии повышает резистентность чукчей , эскимосов и других представителей малых реликтовых этносов к бронхолегочной патологии. К сожалению, чтобы осознать это, понадобился печальный опыт “окультуривания” советского и американо-канадского Севера , когда форсированный переход на европеизированную диету и образ жизни , не смотря на формально “улучшенные условия существования” , привел к значительному возрастанию патологической пораженности болезнями дыхательной системы у аборигенов. Конечно, здесь сыграло роль и учащение контактов с носителями новых для северян изолятов штаммов инфекционных возбудителей. Но, по крайней мере, во многих случаях для индивидов оказывается биологичеки выгодно оставаться в рамках привычной экологии.
Активность ЛПЛ стимулируется инсулином и СТГ. У человека более 80% липогенеза в адипоцитах идет на основе готовых ЖК, поставляемых ЛПЛ-реакцией и только 20% синтезируется из углеводных предшественников в самих жировых клетках.
Гепарин не является кофактором ЛПЛ, но запускает ее секрецию. Коэнзимную роль для ЛПЛ выполняет компонент ХМ, апопротеин С – II. Вместе с тем, апопротеин С – III , наоборот , ингибирует ЛПЛ. Таким образом, от соотношения С – II и С – III может зависеть скорость просветления постгепариновой плазмы. Альбумин ,подхватывая и удаляя из сферы действия реакции НЭЖК, также значительно ускоряет просветление липемической плазмы. В связи с этими фактами , липемия очень часто сопровождается тромбофилитическим состоянием. Более того, гипоальбуминемия , свойственная голоданию и нефротическому синдрому , протекает с задержкой катаболизма ХМ и других ЛП в плазме и гиперлипопротеинемиями. Кроме ХМ, ЛПЛ аналогичнодействует и на ЛПОНП. Остаточные частицы ХМ теряют апопротеины С и А, переходящие на частицы ЛПВП. Через обмен апопротеинов ЛПВП могут регулировать скорость катаболизма ХМ и ЛПОНП, так как служат челноком , снабжающим богатые триглицеридами ЛП активаторами ЛПЛ апопротеинами С. В конце концов, остатки ХМ приобретают из состава ЛПВП апопротеин Е, который способствует их захвату печенью через особый апо-Е-чувствительный и комбинированный , апо-В/Е-чувствительный рецепторы , и подвергаются рецепторному эндоцитозу в гепатоциты , где расщепляются. При этом ХС и другие липиды поставляются в печень, которая использует их для продукции желчных кислот и прямой экскреции липидов в желчь, для собственных пластических и энергетических нужд и для продукции ЛПОНП [3,2000].
В результате ферментативного воздействия ЛПЛ на частицу ХМ, направленного главным образом на ТГ ядра, происходит их гидролитическое расщепление до МГ и свободных ЖК. Последние диффундируют в клетки подлежащих тканей путем латеральной диффузии через мембраны и используются либо сразу же для энергообеспечения (функционирующие мышечные ткани, паренхиматозные органы) , либо запасаются в форме жировых включений (адипоциты жировой ткани). Учитывая , что при гликолизе ХМ расщепляется свыше 70% ТГ их сердцевины, содержащей в норме 90 – 95 % данного класса липидов, становятся очевидными наблюдаемые при этом резкие конформационные нарушения всей липидно-белковой гетеромолекулы в целом. Отмечается интенсивное высвобождение ФЛ, белков , НЭХС из поверхностных слоев ХМ.
ЛП-частицы , образовавшиеся из ХМ после их взаимодействия с ЛПЛ, получили специальное название – “ремнантные”.
Метаболическая судьба “ремнантных” частиц состоит в их утилизации печенью. Исследования последних лет показывают , что скорость поглощения “ремнантных” частиц печенью зависит от ихапопротенового состава. Апо-ЛП Е (в частности , Е-III И Е-IV изоформы) ускоряют данный процесс , в то время как апо-ЛП С ингибирубт, даже в присутствии адекватных количеств апо-ЛП Е [12, 1990].
Заключение.
Одно из основных заболеваний современности – атеросклероз – заболевание, вызванное нарушением обмена липидов, в частности липопротеидов. Значительная часть населения страдает ожирением, которое, в свою очередь, провоцирует развитие болезней сердечно-сосудистой системы.
Для лечения этих заболеваний необходимо понимание механизма их развития, что невозможно без знания нормальных процессов обмена липидов. Все это показывает актуальность моей темы и ее пользу для меня в моей будущей врачебной практике.
ПРИЛОЖЕНИЕ.
Список литературы.
1. Васьковский В. Е. Липиды. ¤¤ Соросовский образовательный журнал. – 1997. №3. С. 32 – 33.
2. Горшкова С. М., Курицин И. Т. Механизмы желчевыделения. – Л. “Наука”. – 1980 . – 287 с.
3. Зайчик А. Ш., Чурилов Л. П. Основы общей патологии. Часть 2. Основы патохимии (учебное пособие для студентов медицинских ВУЗов) – СПб. – 2000. – С. 132 – 155.
4. Иванченкова Р. А. Нейрогуморальная регуляция процессов желчеобразования и желчевыделения. ¤¤ Клин. Медицина. – 1986, т. 64 № 4. С. 27 – 29.
5. Климов А. Н., Никуличева Н. Г. Липиды, липопротеиды, атеросклероз. – СПб. “Питер”. – 1999. – С. 36 – 48.
6. Кононов Е. И., д. м. н. Лекция “Обмен липидов” . Архангельский медицинский институт, 1999 – информация из I-net (www. lipid.ru).
7. Мазурин А. В., Воронцов. И. М. Пропедевтика детских болезней – СПб: ИКФ “Фолиант”. – 1999. – С. 836.
8. Маршал В. Дж. “Клиническая биохимия” ¤ Пер. с англ. – М. – СПб.: “Издательство бином” – “Невский Диалект”, 2000. С. 260.
9. Сорока Н. Ф. Питание и здоровье. – Минск . “Беларусь”. – 1994. – С. 44.
10. Трубачев С. Д. Лекция “Обмен липидов”. УГМА. 2001.
11. Уайт А.., Хэндлер Ф., Смит Э. Основы биохимии. – М: Мир. – 1981. т.№3, С.1359 – 1361.
12. Холодова Ю. Д. , Чаяло П. П. Липопротеины крови. – Киев “Наука думка”. – 1990. – С. 82 – 84 .
Введение.
Уже при кратком знакомстве с молекулярными основами жизни мы сталкиваемся с липидами. Назовем их основные биологические свойства:
· Главные компоненты биологических мембран;
· Запасной, изолирующий и защищающий органы материал;
· Наиболее калорийная часть пищи;
· Важная составная часть диеты человека и животных;
· Переносчики ряда витаминов;
· Регуляторы транспорта витаминов и солей;
· Иммуномодуляторы;
· Регуляторы активности некоторых ферментов;
· Эндогормоны;
· Передатчики биологических сигналов.
Этот список увеличивается по мере изучения липидов. В обеспечении названных и других функций участвуют липиды различной структуры в разных количествах: тонны триглицеридов служат китам как запас энергии и защита тела от внешних воздействий, а как эндогормоны или передатчики биологических сигналов действуют липиды других классов в микро- и нанограммовых дозах. Поэтому для понимания сути многих биологических процессов нужно иметь представления о переваривании и всасывании липидов, об их транспорте и синтезе в организме.
Определение класса липидов, их классификация и
Биологическое значение .
В учебнике по общей химии под редакцией Ю. И. Полянского сказано: “Липиды представляют собой органические вещества, нерастворимые в воде, но растворимые в бензоле, эфире, ацетоне.” Сходные определения липидов чаще всего встречаются и в одном из лучших руководств по биохимии. Они имеют два существенных недостатка: во – первых, вместо четкой химической характеристики класса говорят о физических свойствах липидов, во – вторых, содержат фактические ошибки. Так, далеко не все липиды растворимы в перечисляемых органических растворителях. Н. Грин с соавторами, с одной стороны критикуют подобные определения, но с другой – не доводят дело до конца: “ Можно все же сказать, что настоящие липиды – это сложные эфиры жирных кислот и какого – либо спирта”. Как мы увидим, помимо сложных эфиров спиртов есть много других липидов. Неправильные определения влекут за собой запутанные, неверные классификации . В число липидов часто включают стерины, жирорастворимые витамины и другие соединения. Мы будем относить к липидам вещества с четко выраженной химической структурой, тесно связанные биохимически: липиды – это жирные кислоты и их производные.
Что такое жирные кислоты? Из органической химии известно, что это алифатические монокарбоновые кислоты R – СООН. Как и для других классов природных соединений, определение наполнится глубоким содержанием после знакомства с главными представителями липидов [1, 1997].
Липиды разделяются на две группы по принципу гидролитического расщепления. Первая – липиды, не подвергающиеся гидролизу. К ним можно отнести некоторые углеводороды , например, сквален и картиноиды, высшие спирты, включая стерины, и высшие аминоспирты, высшие альдегиды, кетоны и хиноны ( витамины группы К, убихинон и т.д. ) , жирные кислоты (ЖК) и простогландины (ПГ). Во вторую группу включены липиды, гидролиз которых приводит к “освобождению” двух и более индивидуальных соединений. В эту группу входят в основном вещества, содержащие сложноэфирную и / или амидную связи, а также связь типа простого эфира, ацеталя или полуацеталя. Это – воски, эфиры стеринов, в том числе холестерина (ХС) и многоатомных спиртов (например, глицериды, фосфолипиды (ФЛ), включая сфиегомиелины ), гликолипиды, серусодержащие липиды и липиды, имеющие в своем составе аминокислоты.
Если оставить в стороне ряд соединений, которые по отдельным признакам подходят к определению “липиды” или являются их предшественниками (например , жирные кислоты, сквален и др.) или производными (например, ПГ), то можно использовать следующую классификацию липидов, основанную на их структурных особенностях:
n глицериды;
n воски;
n ФЛ: глицерофосфолипиды , сфингомиелины;
n гликолипиды (гликосфинголипиды) : цереброзиды и ганглиозиды ;
n другие сложные липиды ( сульфолипиды и аминолипиды);
n стерины и их эфиры с ЖК.
Биологическое значение.
Воска: У позвоночных воски, секретируемые кожными железами, выполняют функцию защитного покрытия, смазающего и смягчающего кожу и предохраняющего ее от воды. Восковым секретом покрыты даже волосы. Перья птиц , особенно водоплавающих, и шкура животных имеют восковое покрытие, которое придает водоотталкивающие свойства. Воск овечьей шерсти, называемый линолином, в качестве спиртовой компоненты содержит ланостерин – один из конечных продуктов биосинтеза холестерина. Ланолин широко используется в медицине и косметике как основа для приготовления различных мазей и кремов.
Цереброзиды обнаруживаются главным образом в миелиновых оболочках и в мембранах нервных клеток мозга.
Ганглиозиды: Они найдены в сером веществе головного мозга. Локализованы в плазматических мембранах нервных клеток, где на их долю приходится около 6 % мембранных липидов. В меньшем количестве они обнаружены в мембранах клеток других тканей. Показано участие ганглиозидов в формировании защитного слоя клеток – гликокаликса и в осуществлении ими рецепторной функции.
ФЛ обнаружены в составе тканей и клеток всех живых существ, как в свободном виде, так и в виде белково – липидных комплексов (липопротеидов и протеолипидов) . Особенно много ФЛ содержится в оболочках и мембранах клеток и клеточных органелл (ядра, митохондрий и микросомах), где они образуют структурную основу мембраны – фосфолипидный бислой. Наиболее богаты ФЛ ткани мозга и нервов (до 30 % в пересчете на сухую массу ткани), печень(до 16 %), почки(до11%), сердце(до 10 %), скелетные мышцы (около 3 %). В плазме крови человека содержится 2,8 – 4,4 ммоль / л ФЛ.
Всюду, где содержатся ФЛ им сопутствует холестерин. Поэтому эти липиды иногда называют комплементарными.
Стерины и их эфиры с жирными кислотами: Наиболее важным представителем этого класса соединений является ХС. Каждая клетка в организме млекопитающих содержит ХС входя в состав мембранных клеток , НЭХС вместе с ФЛ и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней энзимов.
ХС является источником образования в организме млекопитающих желчных кислот, а также стероидных гормонов: тестостерона, эстрадиола, прогестерона, кортизоном, альдестерона. ХС, а точнее продукты его окисления 7-дегидрохолестерин, в результате воздействия УФ-лучей на кожу превращается в ней в витамин D3. Таким образом физиологическая функция ХС многообразна [5,1999].
Глицериды. ТГ составляют основную массу резервных липидов человеческого организма. Они выполняют резервную функцию, причем это преимущественно энергетический резерв организма. У человека массой 70 кг на долю резервных липидов приходится примерно 11 кг. Учитывая калорический коэффициент для липидов, равный 9,3 ккал/г, общий запас энергии в резервных ТГ составляет величину порядка 100000 ккал. Функция резервных ТГ как запаса пластического материала не столь очевидна, но все же продукты расщепления ТГ могут использоваться для биосинтезов, например, входящий в их состав глицерол может быть использаван для синтеза глюкозы или некоторых аминокислот.
Являясь одним из основных компонентов жировой ткани, ТГ участвуют в защите внутренних органов человека от механических повреждений. Кроме того , входя в большом количестве в состав подкожной жировой клетчатки, они участвуют втерморегуляции, образуя теплоизолирующую прослойку [6, 1999].
Дата: 2019-07-30, просмотров: 274.