Регуляция развития нервной системы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Высокая степень организации такой структуры, как сетчатка, ставит новые проблемы. Если для сборки компьютера необходим человеческий мозг, то никто не контролирует мозг во время развития и установления его связей. Пока еще остается загадкой, как правильная «сборка» частей мозга приводит к появлению его уникальных свойств.

В зрелой сетчатке каждый тип клеток расположен в соответствующем слое или подслое и образует строго определенные связи с соответствующими клетками-мишенями. Такое устройство является необходимым условием правильного функционирования. Например, для развития нормальных ганглиозных клеток клетка-предшественник должна разделиться, мигрировать в определенное место, дифференцироваться в определенную форму и образовать специфические синаптические связи.

Аксоны этой клетки должны найти через значительное расстояние (оптический нерв) определенный слой клеток-мишеней в следующем звене синаптического переключения. Аналогичные процессы происходят во всех отделах нервной системы, в результате чего образуются сложные структуры со специфическими функциями.

Исследование механизмов образования таких сложных структур, как сетчатка, является одной из ключевых проблем современной нейробиологии. Понимание того, каким образом сложные взаимосвязи нейронов образуются в процессе индивидуального развития (онтогенезе), может помочь описать свойства и происхождение функциональных расстройств мозга. Некоторые молекулы могут играть ключевую роль в дифференциации, росте, миграции, образовании синапсов и выживании нейронов. Такие молекулы в настоящее время описываются все чаще. Интересно отметить, что электрические сигналы регулируют молекулярные сигналы, которые запускают рост аксонов и образование связей. Активность играет роль в установлении паттерна связей.

Генетические подходы позволяют идентифицировать гены, которые контролируют дифференциацию целых органов, таких как глаз в целом. Геринг с коллегами исследовал экспрессию гена eyeless у плодовой мушки Drosophila, который контролирует развитие глаз. Удаление этого гена из генома приводит к тому, что глаза не развиваются. Гомологичные гены у мышей и человека (известные как small eye и aniridia) похожи по структуре. Если гомологичный ген eyeless млекопитающих искусственно встроен и экспрессируется у мушки, то у этого животного развиваются дополнительные (мушиные по структуре) глаза на усиках, крыльях и ногах. Это позволяет предположить, что этот ген одинаково управляет образованием глаза у мухи или мыши, несмотря на полностью различные структуру и свойства глаз насекомых и млекопитающих.

Регенерация нервной системы после травмы

 

Нервная система не только устанавливает связи во время развития, но может восстанавливать некоторые связи после повреждения (ваш компьютер этого делать не может). Например, аксоны в руке могут прорастать после повреждения и устанавливать связи; рука опять может двигаться и ощущать прикосновения. Аналогично, у лягушки, рыбы или беспозвоночного животного вслед за разрушениями в нервной системе наблюдается регенерация аксонов и восстановление функции. После перерезки оптического нерва у лягушки или рыбы волокна опять прорастают и животное может видеть. Однако, эта способность не присуща центральной нервной системе взрослых позвоночных животных — у них регенерация не происходит. Молекулярные сигналы, которые блокируют регенерацию, и их биологическое значение для функционирования нервной системы неизвестны

 



Выводы

 

∙ Нейроны связаны друг с другом строго определенным способом.

∙ Информация от клетки к клетке передается через синапсы.

∙ В относительно простых системах, таких как сетчатка глаза, можно проследить все связи и понять значение межклеточных сигналов.

∙ Нервные клетки мозга являются материальными элементами восприятия.

∙ Сигналы в нейронах высоко стереотипны и одинаковы для всех животных.

∙ Потенциалы действия без потерь могут проходить большие расстояния.

∙ Локальные градуальные потенциалы зависят от пассивных электрических свойств нейронов и распространяются только на короткие расстояния.

∙ Особое строение нервных клеток требует специализированного механизма аксонального транспорта белков и органелл от и к телу клетки.

∙ Во время индивидуального развития нейроны мигрируют к окончательному месторасположению и устанавливают связи с мишенями.

∙ Молекулярные сигналы управляют ростом аксонов.



Список литературы

 

Пенроуз Р. НОВЫЙ УМ КОРОЛЯ. О компьютерах, мышлении и законах физики.

Грегори Р. Л. Разумный глаз.

Леках В. А. Ключ к пониманию физиологии.

Гамов Г., Ичас М. Мистер Томпкинс внутри самого себя: Приключения в новой биологии.

Кожедуб Р. Г. Мембранные и синоптические модификации в проявлениях основных принципов работы головного мозга.

Дата: 2019-07-31, просмотров: 166.