Аналого-цифровой преобразователь предназначен для преобразования аналогового сигнала, идущего с датчика температуры, в цифровой код, предназначенный для ввода в ПЭВМ.
В качестве АЦП выбираем импортную микросхему AD573K. Это 10-битный АЦП последовательного приближения совместимый с МП. Данный АЦП имеет следующие характеристики:
Разрядность: 10 бит
Относительная точность ±1/2
Температурный диапазон 0…70°С
Напряжение питания: +5 В
Тактовый генератор: работает не зависимо от тактовой частоты шины.
Погрешность квантования: ±1/2
Значение шага квантования для данного АЦП, при Uвх.макс.=5 В, Uвх.мин.=0 В, n=10:
=(5-0)/1024=5мВ
5 мВ – это единица младшего значащего разряда (МЗР). Т.е. при изменении входного сигнала на каждые 5 мВ будет изменяться цифровой код.
Т.к. 1 МЗР в измерениях соответствует 0.5ºС, то одноканальное устройство контроля температуры при использовании 10-битного АЦП способно измерять температуру от 0 до 1024´0.5=512ºС. Из этого предела мы будем использовать только диапазон 0…100ºС.
Вследствие этого, одноканальное устройство контроля температуры будет измерять температуру в пределах 0…100ºС с точностью до половины градуса.
На рисунке 1 представлена векторная диаграмма, которая показывает управление сигналами и выбором времени для микросхемы AD573K. Работа микросхемы контролируется тремя входами: CONBERT, HBE и LBE. Конверсионный цикл начинается с импульса CONBERT, который запускает преобразование и DR устанавливается в единицу с задержкой 1,5 мс. Через 500 нс данные в АЦП сформировались и сигнал DR опускается в ноль. Т.к. в схеме подключения АЦП выходной сигнал DR инвертируется и на выходы HBE и LBE сигнал подается одновременно, то данные будут выведены только после конца преобразования автоматически с задержкой в 1 мкс.
Рис. 1 Векторная диаграмма AD573K
t=tcs
Селектор адреса
Для осуществления процесса обмена (записи и чтения) выбираем два адреса:
360h – адрес порта записи;
361h – адрес порта чтения;
Назначение селектора адреса – сообщать устройству, что на шине адреса выставлен адрес одного из используемых регистров (чтения или записи) устройства. В данной работе он выполнен с использованием микросхем логических элементов.
Селектор адреса проверяет адресные линии шины, а так же уровень сигнала на линии AEN, который при обращении к устройствам ввода/вывода должен быть установлен в «0».
Выбираем следующие логические элементы для формирования селектора адреса:
1. 6-НЕ: используем все шесть инверторов. Первые пять инвертируют сигнал с шины ISA, шестой для переключения селектора канала по двум каналам. Выбираю микросхему КР1531ЛН1.
T°C | Icc,мкА | Направление Прохождения Сигнала | Ttip, нс | Tmax, нс | Тип корпуса |
0...70° | 15,3 | - | 5,3 | 6 | DIP14 |
2. “8И-НЕ”: в качестве этого элемента выбираем микросхему 74HCTT30N. Данная микросхема декодирует адресные линии SA0 – SA1, SA8-SA9. Используется также в качестве инверторов.
T°C | Icc,мкА | Направление Прохождения Сигнала | Ttip, нс | Tmax, нс | Тип корпуса |
-40…85° | < 2 | A-H→Q | 16 | 35 | 14DIP |
3. 2-ИЛИ-НЕ: Используется в селекторе адреса в качестве инвертора и непосредственно по прямому назначению. В качестве микросхемы выбираю КР1531ЛЕ1.
T°C | Icc,мкА | Направление Прохождения Сигнала | Ttip, нс | Tmax, нс | Тип корпуса |
0…70° | 13 | - | 5,3 | 6,5 | DIP14 |
4. 2И: используется для окончательного выделения стробов. В качестве микросхемы выбираю КР1533ЛИ1.
T°C | Icc,мкА | Направление Прохождения Сигнала | Ttip, нс | Tmax, нс | Тип корпуса |
0…70° | 4 | - | 10 | 14 | DIP14 |
Формирователь стробов
В данной работе формирователь стробов будет выполнять следующую функцию: на своем выходе выставлять “1”, если на шине выставлен необходимый адрес (т.е. на выходе селектора адреса “1”).
Командами на ISA, позволяющими считывать или записывать данные в регистры устройства, являются -IOR и –IOW. Таким образом, для записи/чтения регистров необходимо связать сигнал с выхода селектора адреса с командами -IOR и -IOW. Только после этого будет возможен обмен данными.
При проектировании, как селектора адреса, так и формирователя стробов необходимо учитывать время переключения отдельных микросхем. И от того, как долго или быстро будут переключаться логические элементы схемы, зависит работа всего устройства. Время переключения микросхем можно проследить во временных диаграммах, приведенных в графической части расчетно-пояснительной записки.
Для связывания выходов селектора адреса и команд записи/чтения используем два свободных элемента И микросхемы КР1531ЛИ1. При этом на входы элементов И должны подаваться «1». Для этого мы используем микросхему, состоящую из 6 инверторов КР1533ЛН1.
Регистр записи
Для управления работой АЦП необходимо поставить регистр записи данных. В этот регистр при установке на SA0-SA9 адреса 360h, 361 и логического нуля на –IOW будет записываться слово, содержание битов которого следующее:
Бит 0 – бит 7 – установка верхних пределов температуры
Бит 8 – сигнал начала преобразования
Бит 9 – сигнал для разрешения прерывания
Для того чтобы началось преобразование в АЦП, необходимо записать в порт 360h данные. При записи логической 1 в нулевой бит слова подключит датчик. Для записи информации в регистр необходимо подать на вход разрешения записи С логическую 1.
В качестве регистра записи используем микросхему 74ABT821D. Микросхема представляет собой 10-разрядный регистр.
T°C | Icc,мкА | Направление Прохождения Сигнала | Ttip, нс | Tmax, нс | f, МГц | Тип корпуса |
-40...85° | 27000 | CLK→Q | 4,6 | 6,7 | > 125 | 24SOIC |
Дата: 2019-07-31, просмотров: 221.