Анализ распределений направлен на выявление закономерности изменения частот в зависимости от значений варьирующего признака и анализ различных характеристик изучаемого распределения. Прежде, чем приступить к вычислению специальных статистических показателей, необходимо из исходной совокупности исключить единицы, не подчиняющиеся общей закономерности распределения, так называемые выбросы. Выбросы – это значения признака, резко отличающиеся как в большую, так и в меньшую сторону, от значений признака основной части единиц совокупности [3].
Для локализации и устранения выбросов необходимо, прежде всего, ранжировать исходные данные. Затем, в ППП Statistica строится график Box plot на основании ранжированной совокупности. Единицы совокупности, обозначенные на графике звёздочками (*), являются выбросами, которые необходимо исключить из изучаемой совокупности.
Вариационным называется ряд распределения, построенный по количественному признаку. Он может быть представлен в виде таблицы и графически. Табличное представление позволяет не только выявить ту или иную закономерность распределения, но и подробно охарактеризовать структуру изучаемой совокупности.
Таблицы вариационных рядов строятся по принципам группировки. Известные проблемы возникают при определении числа групп, поскольку формула Стерджеса (1.1), рекомендуемая для этих целей, дает приемлемые результаты только в условиях больших статистических совокупностей. Процесс определения числа выделяемых групп, в значительной степени, носит творческий характер и требует от исследователя применения не только теоретических знаний, но и практического опыта и интуиции.
Формула Стерджеса:
, (1.1)
где k – число групп; N – объем совокупности.
Использование ППП значительно упрощает задачу табличного представления вариационного ряда, поскольку позволяет с малыми временными затратами просмотреть несколько таблиц с разным числом групп и размером группировочного интервала. Конечный вариант таблицы должен отвечать следующим требованиям: в таблице не должно быть малонаполненных и нулевых групп; нужно стремиться к получению мономодального распределения (т.е. по обе стороны от максимальной частоты должно наблюдаться закономерное убывание частот). Если не удается избавиться от многовершинности в распределении, это, как правило, означает, что изучаемая статистическая совокупность неоднородна и требует более детального изучения. В этих условиях следует либо работать с выбросами, либо, если единицы совокупности не подчиняются единой закономерности распределения, разбить совокупность на объективно существующие группы, и анализировать их раздельно [3].
Далее представлены таблицы вариационного ряда, построенные с использованием разного числа интервалов.
Таблица 1.1. Распределение регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 году. k=8
Таблица 1.2. Распределение регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 году. k=6
При k=8 получено много малонаполненных групп, что является нежелательным для анализа ряда распределения. Выбирая окончательный вариант табличного представления вариационного ряда в работе, следует остановиться на группировке с использованием 6 групп. Тогда величина группировочного интервала составит 14,6.
Необходимо подвести предварительные итоги (на примере третьей строки): только в тридцати регионах России, что составляет 35,71% от общего числа регионов, количество автомобилей на 1000 человек населения в 1990 году составляло от 46,3 до 60,9 штук. В пятидесяти пяти регионах России (65,47% от всех регионов) количество автомобилей на 1000 человек населения в 1990 году составляло менее 60,9 штук.
Табличное представление вариационного ряда позволяет получить подробную информацию о составе и структуре изучаемой совокупности, т.е. определить какое количество единиц изучаемой совокупности обладает тем или иным значением признака и какова доля этой группы единиц в общем объеме совокупности, а также выявить закономерность изменения частот.
На основе таблиц строятся графики, наглядно представляющие закономерность распределения анализируемой статистической совокупности. Графическое представление может быть осуществлено как использованием абсолютных, так и относительных частот [3].
Рис. 1.1. Полигон распределения регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 году
Рис. 1.2. Кумулята распределения регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 году
Рис. 1.3 Гистограмма распределения регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 году
Дата: 2019-07-30, просмотров: 391.