АЦП с промежуточным буфером при высокой скорости поступления данных
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

АЦП с промежуточным буфером при высокой скорости поступления данных

 

Курсовой проект

Пояснительная записка

1909 420 000 019 ПЗ

 

Руководитель

доцент, к.т.н. В.И.Паутов

Нормоконтролер

доцент, к.т.н. Н.С.Калинин

Студенты Н.С.Ковалевский

Гр.Р-311а А.А.Мансуров

 

Екатеринбург 2005



Реферат

 

В данном курсовом проекте была разработана система аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный десятиразрядный код, система преобразования параллельного цифрового кода в последовательный цифровой код, а также система управления данным преобразователем. Были разработаны структурная и принципиальная электрическая схемы. Разработанная схема позволяет преобразовывать входное аналоговое напряжение в диапазоне от -2,5В до +2,5В. Генератор тактовых импульсов выдает сигнал с частотой f = 1 МГц , что позволяет производить 100.000 измерений в секунду (по десять тактов на измерение). Высокая скорость позволяет измерять кратковременные изменения напряжения.

В схеме предусмотрен временный буфер для хранения данных и преобразователь параллельного кода в последовательный, что дает возможность передавать данные по линии связи (например на компьютер) для их дальнейшей обработки.

Система управления позволяет синхронизировать работу всей схемы. Она управляет работой микросхем подавая сигналы управления в определенное время соответствующим микросхемам.

Схема содержит широко распространённые элементы и может быть собрана на практике.

Данный курсовой проект содержит 21 стр., 11 рис.,1стр. приложения



Содержание

 

Введение

1.Структурная схема

2.Принципиальная схема

2.1 Выбор и обоснование структурной схемы

2.2 Схема включения согласующего операционного усилителя К574УД1

2.3 Аналого-цифровой преобразователь (АЦП)

2.4 Буфер FIFO

2.5 Генераторы тактовых импульсов

Счетчик импульсов

2.7 Устройство управления на логических элементах

2.8 Буферный усилитель

3. Конструктивное исполнение системы

4. Заключение

5. Библиографический список литературы



Введение

 

Кроме чисто «цифрового» сопряжения (ключи, лампы и т. п.), часто требуется преобразовать аналоговый сигнал в число, пропорциональное амплитуде сигнала и наоборот. Это играет важную роль в тех случаях, когда компьютер или процессор регистрируют или контролируют ход эксперимента или технологического процесса, или всякий раз, когда цифровая техника используется для выполнения традиционно аналоговой работы. Аналого-цифровое преобразование следует использовать в областях, где для обеспечения помехоустойчивой и шумозащищенной передачи аналоговая информация преобразуется в промежуточную цифровую форму (например, «цифровая звукотехника» или импульсно-кодовая модуляция). Это требуется в самых разнообразных измерительных средствах (включая обычные настольные приборы типа цифровых универсальных измерительных прибором и более экзотические приборы, такие, как усреднители переходных процессов, «ловушки для выбросов» и осцил­лографы с цифровой памятью), а также в устройствах генерации и обработки сигналов, таких, как цифровые синтезаторы колебаний и устройства шифрования данных.

И, наконец, техника преобразования является существенной составляющей способов формирования аналоговых изображений с помощью цифровых средств, например, показаний измерительных приборов или двух координатных изображений, создаваемых компьютером. Даже в относительно простой электронной аппаратуре существует масса возможностей для применения аналого-цифрового и цифро-аналогового преобразования.



Структурная схема

 

Структурная схема преобразователя аналогового сигнала в последовательный код содержит следующие элементы:

ОУ – схема включения согласующего операционного усилителя

АЦП – аналого-цифровой преобразователь (преобразователь аналогового сигнала в параллельный восьмиразрядный код)

ПК – преобразователь параллельного восьмиразрядного кода в последовательный (буфер)

ГТИ – задающий генератор тактовых импульсов

УУ – устройство управления преобразователем

 

Рис.1. Структурная схема преобразователя

 

где

АС – аналоговый сигнал (напряжение Uвх)

САС – согласованный аналоговый сигнал

ПВК – параллельный восьмиразрядный код

ЦК – цифровой код (последовательный код)

ИС – импульсы синхронизации (тактовые импульсы)

ИУ – импульсы управления

BF - Буфер



Принципиальная схема

Буфер FIFO

 

Преобразователь параллельного цифрового кода в последовательный код построен на базе микросхемы Hitachi MBF1250. Микросхема Hitachi MBF1250 – это буфер типа FIFO(First Input First Output) с размером матрицы 128Кx8 и, по сути дела представляет собой последовательно соединённые параллельные восьмиразрядные регистры сдвига. Микросхема работает в двух режимах: когда на входе управления появляется сигнал высокого уровня, он запускает первый генератор, систему управления АЦП, при этом происходит запись восьмиразрядных кодов из АЦП в буфер; во втором режиме, когда сигнал управления сообщает об отсутствии информации на входе АЦП, происходит остановка работы первого генератора и самого АЦП, при этом запускается второй генератор, синхронизирующий работу буфера, производящего выгрузку данных. Назначение выводов:

 

Рис.4. Буфер Hitachi MBF1250

 

1. Питание Ucc

2. Общий GND

3. Запись ®WR Вход D4

4. Тактовый вход C Вход D5

5. Вход D6

6. Вход D7

7. Разрешение на чтение

8. Прямой выход Q7

9. Вход D0

10. Вход D1

11. Вход D2

12. Вход D3

13. Вход D4

14. Вход D5

15. Вход D6

16. Вход D7

19. Задержка такта DE

20. Последовательный вход D®

 

Счетчик импульсов

 

Используем микросхему К555ИЕ9 (DD7) четырехразрядный двоично-десятичный счетчик с асинхронным сбросом, дешифрующим счетным выходом, с возможностью асинхронной установки в произвольное состояние от нуля до девяти.

Данный счетчик является составной частью системы управления АЦП и преобразователя параллельного кода в последовательный. Его задача состоит в счете от 0 до 9, преобразование последовательности тактовых импульсов в параллельный четырехразрядный код, для последующего преобразования его ТТЛ логикой в сигналы управления.

Тактовые импульсы подаются с генератора на вход С. Он работает по переднему фронту входного импульса (0®1). Так как счетчик работает постоянно, то нас не интересует какое значение установится при его запуске, т.е. предварительный сброс счетчика в ноль не требуется, поэтому на вход R подадим потенциал высокого уровня.

Предварительная запись значения в счетчик по входам D1, D2, D3, D4 нас не интересует поэтому необходимо эти выводы микросхемы заземлить. Так как нет предварительной записи, то не требуется и вход разрешающий предварительную запись V2. На этот вывод подадим потенциал высокого уровня.

Вывод P2 выдает высокий уровень напряжения через каждые десять тактов, когда значение в счетчике равно девяти (Q1 = Q4 = 1 ; Q2 = Q3 = 0). В нашей схеме мы его не используем.

Вывод P1 используется для разрешения переноса импульса в следующий каскад (если соединяются несколько счетчиков последовательно). У нас только один счетчик поэтому на вывод P1 должно постоянно подаваться напряжение высокого уровня. На вход разрешения счета V1, в зависимости от режима работы АЦП, подаётся напряжение с сигнала управления. Высокий уровень разрешает работу счетчика, низкий блокирует. Выход R также подсоединяем к СУ. Низкий уровень обнулирует счетчик.

Выводы P1, V2 – подаем высокий уровень напряжения

Выводы D1, D2, D3, D4 – заземляем

Назначение выводов ИС К555ИЕ9

1. Вход “установка L” R

2. Вход синхронизации С

3. Вход информационный D1

4. Вход информационный D2

5. Вход информационный D3

6. Вход информационный D4

7. Вход разрешения счета V1

8. Общий GND

9. Вход разрешения предварительной записи V2

10. Вход разрешения переноса P1

11. Выход четвертого разряда Q4

12. Выход третьего разряда Q3

13. Выход второго разряда Q2

14. Выход первого разряда Q1

15. Выход переноса

16. Питание Ucc

 

Рис.6. ИС К555ИЕ9

Микросхема К555ИЕ9 имеет следующие характеристики

 

( Ucc = 5,25 В; U1вых ³ 2,7 В; U0вых £ 0,5 В; Iпотр £ 31 мА; I0вх ³ -0,4 мА; I1вх £ 0,02 мА;

 I0вых ³ 8 мА; I1вых £ -0,4 мА; tздр £ 39 нс )

 

Потребляемая мощность микросхемы К555ИЕ9 равна:

 

Pпотр = 162,75 мВт

 

Буферный усилитель

Буферный усилитель построен на базе ИС К155ЛП4 и предназначен для усиления выходного последовательного кода с буфера.


Рис.11. ИС К155ЛП4.




Заключение

 

В результате проделанной работы мы получили высокоскоростной преобразователь аналогового сигнала в цифровой код. Были разработаны структурная и принципиальная схемы преобразователя, а так же системы управления преобразователя. Принципиальная схема содержит 10 микросхем, 1 операционный усилитель, 5 диодов, 9 резисторов, 7 конденсаторов. Все элементы являются хорошо распространенными и доступными для использования.

 


5. Библиографический список литературы

1. Федорков Б.Г., Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение.-М.; Энергоатомиздат, 1990.

2. Ерофеев Ю.Н. Импульсные устройства.-М.; Высшая школа, 1989.

3. Шило В.Л. Популярные цифровые микросхемы.-М.; Радио и связь, 1987.

4. Мальцев П.П., Долидзе Н.С., Критенко М.И. Цифровые интегральные микросхемы: Справочник.-М.; Радио и связь, 1994.

5. Аванесян Г.Р., Левшин В.П. Интегральные микросхемы ТТЛ, ТТЛШ: Справочник.-М.; Машиностроение, 1993.

6. Гусев В.Г., Гусев Ю.М. Электроника.-М.; Высшая школа, 1991.

7. Интегральные микросхемы: Справочник / Б.В.Тарабрин, Л.Ф.Лунин, Ю.Н. Смирнов и др.; Под ред. Б.В.Тарабрина.-М. Радио и связь, 1984.

8. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам / Под ред. Н.Н.Горюнова.-М.; Энергия, 1977.


АЦП с промежуточным буфером при высокой скорости поступления данных

 

Курсовой проект

Пояснительная записка

1909 420 000 019 ПЗ

 

Руководитель

доцент, к.т.н. В.И.Паутов

Нормоконтролер

доцент, к.т.н. Н.С.Калинин

Студенты Н.С.Ковалевский

Гр.Р-311а А.А.Мансуров

 

Екатеринбург 2005



Реферат

 

В данном курсовом проекте была разработана система аналого-цифрового преобразования быстроизменяющегося аналогового сигнала в параллельный десятиразрядный код, система преобразования параллельного цифрового кода в последовательный цифровой код, а также система управления данным преобразователем. Были разработаны структурная и принципиальная электрическая схемы. Разработанная схема позволяет преобразовывать входное аналоговое напряжение в диапазоне от -2,5В до +2,5В. Генератор тактовых импульсов выдает сигнал с частотой f = 1 МГц , что позволяет производить 100.000 измерений в секунду (по десять тактов на измерение). Высокая скорость позволяет измерять кратковременные изменения напряжения.

В схеме предусмотрен временный буфер для хранения данных и преобразователь параллельного кода в последовательный, что дает возможность передавать данные по линии связи (например на компьютер) для их дальнейшей обработки.

Система управления позволяет синхронизировать работу всей схемы. Она управляет работой микросхем подавая сигналы управления в определенное время соответствующим микросхемам.

Схема содержит широко распространённые элементы и может быть собрана на практике.

Данный курсовой проект содержит 21 стр., 11 рис.,1стр. приложения



Содержание

 

Введение

1.Структурная схема

2.Принципиальная схема

2.1 Выбор и обоснование структурной схемы

2.2 Схема включения согласующего операционного усилителя К574УД1

2.3 Аналого-цифровой преобразователь (АЦП)

2.4 Буфер FIFO

2.5 Генераторы тактовых импульсов

Счетчик импульсов

2.7 Устройство управления на логических элементах

2.8 Буферный усилитель

3. Конструктивное исполнение системы

4. Заключение

5. Библиографический список литературы



Введение

 

Кроме чисто «цифрового» сопряжения (ключи, лампы и т. п.), часто требуется преобразовать аналоговый сигнал в число, пропорциональное амплитуде сигнала и наоборот. Это играет важную роль в тех случаях, когда компьютер или процессор регистрируют или контролируют ход эксперимента или технологического процесса, или всякий раз, когда цифровая техника используется для выполнения традиционно аналоговой работы. Аналого-цифровое преобразование следует использовать в областях, где для обеспечения помехоустойчивой и шумозащищенной передачи аналоговая информация преобразуется в промежуточную цифровую форму (например, «цифровая звукотехника» или импульсно-кодовая модуляция). Это требуется в самых разнообразных измерительных средствах (включая обычные настольные приборы типа цифровых универсальных измерительных прибором и более экзотические приборы, такие, как усреднители переходных процессов, «ловушки для выбросов» и осцил­лографы с цифровой памятью), а также в устройствах генерации и обработки сигналов, таких, как цифровые синтезаторы колебаний и устройства шифрования данных.

И, наконец, техника преобразования является существенной составляющей способов формирования аналоговых изображений с помощью цифровых средств, например, показаний измерительных приборов или двух координатных изображений, создаваемых компьютером. Даже в относительно простой электронной аппаратуре существует масса возможностей для применения аналого-цифрового и цифро-аналогового преобразования.



Структурная схема

 

Структурная схема преобразователя аналогового сигнала в последовательный код содержит следующие элементы:

ОУ – схема включения согласующего операционного усилителя

АЦП – аналого-цифровой преобразователь (преобразователь аналогового сигнала в параллельный восьмиразрядный код)

ПК – преобразователь параллельного восьмиразрядного кода в последовательный (буфер)

ГТИ – задающий генератор тактовых импульсов

УУ – устройство управления преобразователем

 

Рис.1. Структурная схема преобразователя

 

где

АС – аналоговый сигнал (напряжение Uвх)

САС – согласованный аналоговый сигнал

ПВК – параллельный восьмиразрядный код

ЦК – цифровой код (последовательный код)

ИС – импульсы синхронизации (тактовые импульсы)

ИУ – импульсы управления

BF - Буфер



Принципиальная схема

Дата: 2019-07-30, просмотров: 199.