Введение
Изучение свойств алгебраических операций привело математиков к выводу о том, что основная задача алгебры - изучение свойств операций рассматриваемых не зависимо от объектов, к которым они применяются. И если первоначально алгебра была учением уравнений, то XX веке она превратилась в науку об операциях и их свойствах.
Ознакомление учащихся с арифметическими действиями подготавливается на первых уроках математики практическими упражнениям в объединении двух множеств предметов, в установлении соответствия между элементами двух множеств, в выделении части данного множества предметов.
Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач.
Если по двум данным числам определяют третье число, удовлетворяющее некоторым условиям, то этот процесс в математике называют действием.
Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании свойств арифметических действий.
Для объяснения обычно используют множества предметов не ссылаясь на задачи. Не каждый учитель ясно представляет, что изучение арифметических действий и их свойств в процессе работы с задачей усваиваются лучше. Исходя из важности изучения свойств арифметических действий, из-за отсутствия единого подхода к изучению данной проблеме в различных системах обучения возникает необходимость рассмотрения, выяснения и уточнения особенностей формирования понятия свойств арифметических действий. В этом заключается актуальность, так как, во-первых, изучение и применение свойств арифметических действий является одним из важных тем, во-вторых, многие учителя не акцентируют внимание на использование свойств этих действий.
Учитывая актуальность мы определили тему курсовой работы "Формирование понятия свойств арифметических действий у младших школьников".
Проблема исследования: какими приемами работы, видами деятельности детей можно добиться усвоения свойств арифметических действий.
Цель исследования: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.
Объект исследования: процесс изучения математики в начальных классах.
Предмет исследования: формирование понятия свойств арифметических действий у младших школьников.
Гипотезой исследования выдвигается, положение о том, что раскрытие конкретного смысла свойств арифметических действий учителями поможет грамотному формированию понятия свойств арифметических действий:
лучше усвоить ее, применять свойства и действия при решении задач и примеров;
в доступной форме для младших школьников познакомить их с теми свойствами рассматриваемых действий, которые являются теоретической основой изучаемых приемов устных и письменных вычислений;
формировать у детей сознательные и прочные навыки быстрых и правильных вычислений.
Для достижения цели в ходе исследования поставлены следующие задачи исследования:
Изучить и систематизировать психолого-педагогическую, методическую и специальную литературу по проблеме исследования.
Выявить роль задач в усвоении свойств арифметических действий младшими школьниками.
Ознакомиться с опытом работы учителей начальных классов по формированию свойств арифметических действий у младших школьников.
Провести исследовательскую и экспериментальную работу по проблеме исследования.
Методологической основой исследования являются положения отечественной педагогики сформулированной в трудах В.В. Давыдова, Н.Б. Истоминой, М.А. Бантовой, М.И. Моро, Н.Ф. Виноградова и др.
В ходе исследования использовались следующие методы исследования:
анализ психолого-педагогической, исторической, методической и учебной литературы;
изучение опыта работы учителей начальных классов.
Этапы реализации исследовательской работы:
этап (сентябрь - декабрь 2009г) - выбор темы исследования, определение научного аппарата исследования, изучение литературы по раскрытию конкретного смысла свойств арифметических действий.
этап (январь - март 2010 г) - определение базы исследования, проведение опытно-экспериментальной работы, оформление теоретической части.
IIIэтап (апрель - май 2010 г) - анализ и обобщение результатов исследования, составление рекомендаций и оформление дипломной работы.
Научная новизна исследования заключается в выявлении особенностей раскрытия конкретного смысла свойств арифметических действий и использование их в процессе изучения математики.
Теоретическая значимость: изучен и систематизирован теоретический и методический материал по данной проблеме, определено содержание учебного материала в программах начальных классов.
Практическая значимость исследования:
1) приведены в систему накопленный опыт работы учителей начальных классов;
выделены виды задач, используемые для раскрытия конкретного смысла арифметических действий, выявлены приемы и методы применения свойств арифметических действий, используемые для рационального решения примеров;
эти приемы апробированы в процессе экспериментальной работы и доказана возможность использования их учителями начальных классов, студентами и преподавателями педагогического института.
Апробирование исследования осуществлялась в ходе экспериментальной работы.
Достоверность исследования определяется анализом теоретического, экспериментального материала, обработкой полученных результатов опытного исследования.
Структура исследования: данная курсовая работа состоит из введения, двух глав, выводов, заключения и списка использованной литературы.
Выводы
У каждого народа были свои арифметические действия. И все они использовались для выполнения операций над числами. Более тысячи лет развивалась и утверждалась идея выполнения арифметических действий сложения, вычитания, умножения и деления. Эти арифметические действия являются основными действиями в математике. Изучение истории развития являются интересными не только для учеников, но и для нас самих, а изучение помогает заинтересовать младших школьников.
Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач. На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения.
Сложение и умножение чисел обладают свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения.
Переместительное свойство умножения широко используется при составлении таблицы умножения однозначных чисел. Сочетательный закон в начальной школе в явном виде не рассматривается, но используется вместе с переместительным законом при умножении числа на произведение. Распределительный закон умножения относительно сложения рассматривается в школе на конкретных примерах и носит название правил умножения числа на сумму и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями.
Выводы
Основу начального курса математики составляют представления о натуральном числе и нуле, о четырех арифметических действиях с целыми неотрицательными числами и важнейших их свойствах, а также основанное на этих знаниях осознанное и прочное усвоение приемов устных и письменных вычислений.
Программа М.И. Моро предусматривает раскрытие взаимосвязи между компонентами и результатами действий. Важнейшее значение придается постоянному использованию сопоставления, сравнения, противопоставления связанных между собой понятий, действий и задач, выяснению сходства и различия в рассматриваемых фактах. С этой целью материал сгруппирован так, что изучение связанных между собой понятий, действий, задач сближено во времени.
В основе построения программы Н.Б. Истоминой лежит методическая концепция, выражающая необходимость целенаправленной и систематической работы по формированию у младших школьников приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения - в процессе усвоения математического содержания.
Таким образом, изучение начального курса математики должно создать прочную основу для дальнейшего обучения этому предмету. Для этого важно вооружить учащихся предусмотренным программой кругом знаний, умений и навыков, также надо предлагать учащимся задания, интересные по форме предъявления, необычные по своей интеллектуальной красоте способы и методы решения математических задач, учить быстрым и рациональным приемам вычислений.
Заключение
Изучение и усвоение арифметических действий является неотъемлемой частью обучения математике. Знания арифметических действий, их компоненты в терминологии является одним из основных требований программы математики начальной школы. На их знание и их свойств фактически основывается вся остальная математика, основные ее понятия и программный материал.
Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач. На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения.
Сложение и умножение чисел обладают свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения.
Переместительное свойство умножения широко используется при составлении таблицы умножения однозначных чисел. Сочетательный закон в начальной школе в явном виде не рассматривается, но используется вместе с переместительным законом при умножении числа на произведение. Распределительный закон умножения относительно сложения рассматривается в школе на конкретных примерах и носит название правил умножения числа на сумму и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями.
Учителя начальных классов должны целенаправленно вести работу по формированию свойств арифметических действий. Также учитель сам должен хорошо уметь анализировать и решать задачи, знать с какой целью, где какая задача должна быть использована для формирования и усвоения теоретических вопросов. Широко использовать наглядный материал, который помогает лучшему усвоению темы урока.
Особый интерес у обучающихся вызывают приемы занимательности. Под занимательностью мы понимаем те виды деятельности на уроке, которые содержат в себе элементы необычного, удивительного, неожиданного, космического вызывают у детей интерес к учебному предмету и способствуют созданию положительной, эмоциональной обстановке.
Список литературы
1. Антоненко Т.Е. // Начальная школа / Приемы занимательности. - 2009, №5.
2. Аргинская И.И. // Начальная школа / Особенности обучения младших школьников математике. Методические основы личностно ориентированной системы обучения, направленной на общее развитие школьника. - 2005, №18.
3. Аргинская И.И. // Начальная школа / Особенности обучения младших школьников математике. Особенности программы и учебных пособий по математике для начальной школы. - 2005, №19.
4. Аргинская И.И. // Начальная школа / Особенности обучения младших школьников математике. Методические особенности изучения чисел и действий с ними в системе Л.В. Занкова. - 2005, №21.
5. Игнатьева Т.В. / Программы общеобразовательных учреждений. Начальные классы (1-4): Сборник программ / Т.В. Игнатьева, Л.А. Вохмянина, - М.: Просвещение, 2000.
6. Истомина Н.Б. / Методика обучения математике в начальных классах: Учебное пособие для студентов сред. и высш. пед. учеб. заведений. - М.: Издательский центр "Академия", 2002. - 288с.
7. Канбекова Р.В. / Основы начального курса математики: Учебное пособие. - Стерлитамак: Стерлитамак. гос. пед. ин-т, 1997. - 238 с.
Введение
Изучение свойств алгебраических операций привело математиков к выводу о том, что основная задача алгебры - изучение свойств операций рассматриваемых не зависимо от объектов, к которым они применяются. И если первоначально алгебра была учением уравнений, то XX веке она превратилась в науку об операциях и их свойствах.
Ознакомление учащихся с арифметическими действиями подготавливается на первых уроках математики практическими упражнениям в объединении двух множеств предметов, в установлении соответствия между элементами двух множеств, в выделении части данного множества предметов.
Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач.
Если по двум данным числам определяют третье число, удовлетворяющее некоторым условиям, то этот процесс в математике называют действием.
Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании свойств арифметических действий.
Для объяснения обычно используют множества предметов не ссылаясь на задачи. Не каждый учитель ясно представляет, что изучение арифметических действий и их свойств в процессе работы с задачей усваиваются лучше. Исходя из важности изучения свойств арифметических действий, из-за отсутствия единого подхода к изучению данной проблеме в различных системах обучения возникает необходимость рассмотрения, выяснения и уточнения особенностей формирования понятия свойств арифметических действий. В этом заключается актуальность, так как, во-первых, изучение и применение свойств арифметических действий является одним из важных тем, во-вторых, многие учителя не акцентируют внимание на использование свойств этих действий.
Учитывая актуальность мы определили тему курсовой работы "Формирование понятия свойств арифметических действий у младших школьников".
Проблема исследования: какими приемами работы, видами деятельности детей можно добиться усвоения свойств арифметических действий.
Цель исследования: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.
Объект исследования: процесс изучения математики в начальных классах.
Предмет исследования: формирование понятия свойств арифметических действий у младших школьников.
Гипотезой исследования выдвигается, положение о том, что раскрытие конкретного смысла свойств арифметических действий учителями поможет грамотному формированию понятия свойств арифметических действий:
лучше усвоить ее, применять свойства и действия при решении задач и примеров;
в доступной форме для младших школьников познакомить их с теми свойствами рассматриваемых действий, которые являются теоретической основой изучаемых приемов устных и письменных вычислений;
формировать у детей сознательные и прочные навыки быстрых и правильных вычислений.
Для достижения цели в ходе исследования поставлены следующие задачи исследования:
Изучить и систематизировать психолого-педагогическую, методическую и специальную литературу по проблеме исследования.
Выявить роль задач в усвоении свойств арифметических действий младшими школьниками.
Ознакомиться с опытом работы учителей начальных классов по формированию свойств арифметических действий у младших школьников.
Провести исследовательскую и экспериментальную работу по проблеме исследования.
Методологической основой исследования являются положения отечественной педагогики сформулированной в трудах В.В. Давыдова, Н.Б. Истоминой, М.А. Бантовой, М.И. Моро, Н.Ф. Виноградова и др.
В ходе исследования использовались следующие методы исследования:
анализ психолого-педагогической, исторической, методической и учебной литературы;
изучение опыта работы учителей начальных классов.
Этапы реализации исследовательской работы:
этап (сентябрь - декабрь 2009г) - выбор темы исследования, определение научного аппарата исследования, изучение литературы по раскрытию конкретного смысла свойств арифметических действий.
этап (январь - март 2010 г) - определение базы исследования, проведение опытно-экспериментальной работы, оформление теоретической части.
IIIэтап (апрель - май 2010 г) - анализ и обобщение результатов исследования, составление рекомендаций и оформление дипломной работы.
Научная новизна исследования заключается в выявлении особенностей раскрытия конкретного смысла свойств арифметических действий и использование их в процессе изучения математики.
Теоретическая значимость: изучен и систематизирован теоретический и методический материал по данной проблеме, определено содержание учебного материала в программах начальных классов.
Практическая значимость исследования:
1) приведены в систему накопленный опыт работы учителей начальных классов;
выделены виды задач, используемые для раскрытия конкретного смысла арифметических действий, выявлены приемы и методы применения свойств арифметических действий, используемые для рационального решения примеров;
эти приемы апробированы в процессе экспериментальной работы и доказана возможность использования их учителями начальных классов, студентами и преподавателями педагогического института.
Апробирование исследования осуществлялась в ходе экспериментальной работы.
Достоверность исследования определяется анализом теоретического, экспериментального материала, обработкой полученных результатов опытного исследования.
Структура исследования: данная курсовая работа состоит из введения, двух глав, выводов, заключения и списка использованной литературы.
Глава I. Развитие арифметики
Дата: 2019-07-30, просмотров: 193.