Межмолекулярное взаимодействие — взаимодействие между электрически нейтральными молекулами или атомами. Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.
Ориентационное взаимодействие. Полярные молекулы, в которых центры тяжести положительного и отрицательного зарядов не совпадают, например HCl, H2O, NH3, ориентируются таким образом, чтобы рядом находились концы с противоположными зарядами. Между ними возникает притяжение. Притяжение диполь-диполь может осуществляться только тогда, когда энергия притяжения превышает тепловую энергию молекул; обычно это имеет место в твердых и жидких веществах. Диполь-дипольное взаимодействие проявляется в полярных жидкостях (вода, фтороводород).
Индукционное взаимодействие. Если рядом с полярная молекула окажется полярная рядом с неполярными, она начнет влиять на них. Поляризация нейтральной частицы под действием внешнего поля (наведение диполя) происходит благодаря наличию у молекул свойства поляризуемости γ. Постоянный диполь может индуцировать дипольное распределение зарядов в неполярной молекуле. Под действием заряженных концов полярной молекулы электронные облака неполярных молекул смещаются в сторону положительного заряда и подальше от отрицательного. Неполярная молекула становится полярной, и молекулы начинают притягиваться друг к другу, только намного слабее, чем две полярные молекулы. Притяжение постоянного и наведенного диполей обычно очень слабое, поскольку поляризуемость молекул большинства веществ невелика. Оно действует только на очень малых расстояниях между диполями. Этот вид взаимодействия проявляется главным образом в растворах полярных соединений в неполярных растворителях.
Дисперсионное взаимодействие. Между неполярными молекулами также может возникнуть притяжение. Электроны, которые находятся в постоянном движении, на миг могут оказаться окажется сосредоточенными с одной стороны молекулы, то есть неполярная частица станет полярной. Это вызывает перераспределение зарядов в соседних молекулах, и между ними устанавливаются кратковременные связи. Лондоновские силы притяжения между неполярными частицами (атомами, молекулами) являются весьма короткодействующими. Значения энергии такого притяжения зависят размеров частиц и числа электронов в наведенных диполях. Эти связи очень слабые - самые слабые из всех межмолекулярных взаимодействий. Однако они являются наиболее универсальными, так как возникают между любыми молекулами.
Водородная связь (Н-связь) – особый тип взаимодействия между реакционно-способными группами, при этом одна из групп содержит атом водорода, склонный к такому взаимодействию. Водородная связь – глобальное явление, охватывающее всю химию. Особенности водородной связи. Отличительная черта водородной связи – сравнительно низкая прочность, ее энергия в 5–10 раз ниже, чем энергия химической связи. В образовании Н-связи определяющую роль играет электроотрицательность участвующих в связи атомов – способность оттягивать на себя электроны химической связи от атома – партнера, участвующего в этой связи. В результате на атоме А с повышенной электроотрицательностью возникает частичный отрицательный заряд d- , а на атоме-партнере – положительный d+. Возникший частичный положительный заряд на атоме водорода позволяет ему притягивать другую молекулу, также содержащую электроотрицательный элемент, таким образом, основную долю в образование Н-связи вносят электростатические взаимодействия.
Энергию межмолекулярного взаимодействия можно рассматривать как сумму двух составляющих - энергии притяжения и энергии отталкивания. Часто энергию межмолекулярного взаимодействия приближенно описывают формулой Леннарда-Джонса.
Комплексные соединения. Образование комплексов. Комплексообразователь, лиганды, координационное число, заряд комплекса. Внутренняя и внешняя сфера комплексного соединения.
Комплексные соединения (лат. complexus — сочетание, обхват), иногда называемые координационными — соединения, или ионы, которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.
Лиганд (от лат. ligo — связываю) — атом, ион или молекула, непосредственно связанная с одним или несколькими центральными (комплексообразующими) атомами в комплексном соединении. Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи.
Таким образом, комплексным соединением называют сложное соединение, образующееся при взаимодействии более простых неизменных частиц (атомов, ионов или молекул), каждая из которых способна существовать независимо в обычных условиях.
Комплексные ионы образуют с ионами противоположного заряда комплексные соединения. Так, комплексный ион [Fe(CN)6]3- образует с ионами K+ комплексное соединение K3[Fe(CN)6], которое выделяется из водного раствора при его выпаривании в виде кристаллов красного цвета, хорошо растворимых в воде.
Координационное число — общее число нейтральных молекул и ионов, связанных с центральным ионом в комплексе; например, для комплексного соединения K2[PtCl6] , Координационное число иона платины равно шести; для соединения [Cu(NH3)4]SO4 координационное число ионов меди равно четырем.
Конденсированное состояние вещества. Агрегатные и фазовые состояния, их отличительные признаки. Аморфное и кристаллическое состояние твердого тела. Кристаллическая решетка и элементарная ячейка кристалла. Реальные кристаллы.
Любое вещество может находиться в одном из четырех агрегатных состояниях: твердом, жидком, газообразном или в виде плазмы. При низких температурах и(или) высоких давлениях все вещества находятся в твердом состоянии. Твердое и жидкое состояние вещества называют конденсированным состоянием.
Агрегатное состояние — термодинамическое состояние вещества, сильно отличающееся по своим физическим свойствам от других агрегатных состояний этого же вещества. Термин «агрегатное состояние» довольно размытый и часто слишком огрубляет свойства вещества. Так, почти все вещества в твёрдом агрегатном состоянии могут обладать, в зависимости от давления и температуры, несколькими различными термодинамическими фазами. Отличие понятия агрегатного состояния вещества от термодинамической фазы заключается в выделенном выше слове «сильно». Как правило, требуется, чтобы агрегатные состояния «выглядели» сильно по-разному. Термодинамические же фазы могут отличаться «незаметными глазу» величинами, такими как теплоёмкость, структура кристаллической решётки и т. д. Однако при аккуратном рассуждении рекомендуется использовать именно термин «термодинамические фазы».
твёрдое тело (аморфное либо кристаллическое), держит как форму, так и объём.
жидкость, характеризуется более высокой плотностью и промежуточными температурами. Жидкость держит объём, но не держит форму.
газообразное состояние, характеризуется низкой плотностью и достаточно высокой температурой. Газ не держит ни форму, ни объём.
плазма (часто называемое четвёртое состояние вещества), представляет собой частично или полностью ионизованный газ и возникает при высокой температуре, от нескольких тысяч кельвинов и выше. В целом её свойства напоминают свойства газообразного состояния вещества, за исключением того факта, что для плазмы принципиальную роль играет электродинамика.
Термодинамическая фаза — термодинамически однородная по составу и свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру.
Твердое тело характеризуется тем, что в нем возникают значительные упругие силы не только при изменении объема (сжатие и расширение), но и при изменении формы (например, сдвиг). Твердые тела могут существовать в двух существенно различных состояниях, отличающихся своим внутренним строением, и, соответственно, свойствами. Это кристаллическое и аморфное состояние твердых тел. Кристаллическое состояние характеризуется наличием четко выделяемых естественных граней, образующих между собой определенные углы. Примерами веществ в кристаллическом состоянии могут служить соль, сахарный песок, сода и др. Если весь кусок вещества представляет собой один кристалл, то такое тело называется монокристаллом или просто кристаллом. Наличие естественных граней у монокристаллов ведет к четко выраженному различию в физических свойствах тела по различным направлениям. Это может относиться к механической прочности, тепло- и электропроводности, упругости и т.д. Но не всегда все свойства зависят от направления - кубический кристалл меди обладает одинаковой электропроводностью по всем направлениям, но разной упругостью. Кристаллы - твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.
Второй вид твердого состояния твердых тел - аморфное состояние. В этом состоянии невозможно обнаружить даже малые области, в которых наблюдалась бы зависимость физических свойств от направления. Некоторые вещества могут находиться в любом из этих двух состояний. Аморфные вещества не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило — изотропны, т. е. не обнаруживают различных свойств в разных направлениях, не имеют определенной точки плавления. К аморфным веществам принадлежат стекла, естественные и искусственные смолы, клеи и др.
Кристаллическая решётка, присущее веществу в кристаллическом состоянии правильное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях. Ввиду такой периодичности для описания К. р. достаточно знать размещение атомов в элементарной ячейке, повторением которой путём параллельных дискретных переносов (трансляций) образуется вся структура кристалла. В соответствии с симметрией кристалла элементарная ячейка имеет форму косоугольного или прямоугольного параллелепипеда, квадратной или шестиугольной призмы, куба. Размеры рёбер элементарной ячейки а, b, с называются периодами идентичности. Существует огромное количество кристаллических структур. Их объединяет главное свойство кристаллического состояния вещества — закономерное положение атомов в кристаллической решётке. Одно и то же вещество может кристаллизоваться в разных кристаллических решётках и обладать весьма различными свойствами (классический пример графит — алмаз).
В отличие от идеального кристалла, структура, которого принимается непрерывной, а состав неизменным во всем объеме, строение и состав реальных кристаллов изменяются как во времени так и в пространстве. В идеализированных структурах кристаллов атомы занимают строго определённые положения, образуя правильные трёхмерные решётки (кристаллические решётки). В реальных кристаллах наблюдаются обычно различные отступления от правильного расположения атомов или ионов (или их групп). Такие нарушения могут быть либо атомарного масштаба, либо макроскопических размеров, заметные даже невооружённым глазом.
Дата: 2019-07-30, просмотров: 214.