Квантово-механическая модель атома. Состав атома. Волновые свойства электрона. Волновое уравнение и волновая функция. Атомная орбиталь, основные типы атомных орбиталей.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

СТРОЕНИЕ ВЕЩЕСТВА.

 

Квантово-механическая модель атома. Состав атома. Волновые свойства электрона. Волновое уравнение и волновая функция. Атомная орбиталь, основные типы атомных орбиталей.

Разработчиком модели был Бор. Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Однако электроны могут переходить на другую разрешенную орбиту. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». Если электрон перескакивает на более низкую орбиту, он теряет энергию и, соответственно, испускает квант света — фотон фиксированной энергии с фиксированной длиной волны. Для перехода на более высокую орбиту электрон должен, соответственно, поглотить фотон.

Современная физика так и представляет себе атом: тяжелое ядро с расположенным вокруг него электронным облаком сложной структуры. Это облако является сплошным и непрерывным. Определить, где, в каких его точках в данный момент находятся электроны, невозможно. Это связано с тем, что, во-первых, пока что нет средств для такого наблюдения, во-вторых, электроны внутри атома проявляют двойственную природу: будучи, с одной стороны, элементарными частицами, они, находясь в составе атомов, ведут себя так же как волны.

Волновые свойства присущи каждому электрону в отдельности, а не только системе из большого числа частиц. Волновые свойства электронов были экспериментально обнаружены Джорджем Томсоном уже в 1927 г. Он наблюдал дифракцию электронов при прохождении их через тонкую золотую фольгу. На экране, который фиксировал прошедшие электроны, обнаруживалась картина дифракционных колец, аналогичная той, что бывает при дифракции волн. Зависимость длины волны электрона от его импульса (т.е. от скорости) совпала с предсказанной де Бройлем.

Волнова ́ я фу ́ нкция (функция состояния, пси-функция, амплитуда вероятности) — комплексная функция, используемая в квантовой механике для вероятностного описания состояния квантовомеханической системы. В широком смысле — то же самое, что и вектор состояния. Вектор состояния — основное понятие квантовой механики, математический вектор, задание которого в определённый момент времени полностью определяет состояние квантовой системы и, если известны взаимодействия, его эволюцию в дальнейшем.

Атомная орбиталь — геометрическое представление о движении электрона в атоме; движение электрона в атоме отличается от классического движения по траектории, а описывается законами квантовой механики. томные орбитали (АО) разных типов отличаются друг от друга формой и энергией и обозначаются символами: s, p, d, f и т.д. Атомные орбитали s-типа имеют форму сферы. р-АО имеют форму объемной восьмерки (гантели), направленной по оси x, y или z. Энергия орбитали возрастает по мере удаления электрона от ядра атома (т.е. с увеличением номера электронного уровня).

 

Квантовые числа. Главное квантовое число, энергетические уровни. Орбитальное квантовое число, энергетические подуровни. Магнитное квантовое число, количество атомных орбиталей в энергетическом подуровне. Спин электрона.

Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным.

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n, тем выше энергия и больше размер орбитали. Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K, L, M, N... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n−1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s, p, d, f.

Каждый период начинается элементом, в атоме которого впервые появляется электрон с данным значением n (водород или щелочной элемент), и заканчивается элементом, в атоме которого до конца заполнен уровень с тем же n (благородный газ). Первый период содержит всего два элемента, второй и третий - по восемь (малые периоды). Начиная с четвертого, периоды называют большими, так как в них появляются d- и f-элементы: четвертый и пятый периоды включают по 18 элементов, шестой - 32. Седьмой период еще не завершен, но он, как и шестой, должен содержать 32 элемента.

Магнитное квантовое число ml отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число ml может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р-орбитали (l = 1) могут быть ориентированы тремя способами (ml = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым) ms, которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы.

Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом ms, которое может быть равно +1/2 и −1/2.

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем. Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K, L, M, ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l. Подуровни обозначают буквами: s, p, d, f... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

 

Периодическая система химических элементов Д.И. Менделеева. Периодический закон Д.И. Менделеева. Причина периодического повторения свойств элементов. Связь между электронной структурой атомов и периодической системой Д.И. Менделеева: порядковый номер элемента, периоды, группы и подгруппы элементов.

Периодический закон Д. И. Менделеева — фундаментальный закон, устанавливающий периодическое изменение свойств химических элементов в зависимости от увеличения зарядов ядер их атомов. «…свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса». Основной закон химии - Периодический закон был открыт Д.И. Менделеевым в 1869 году в то время, когда атом считался неделимым и о его внутреннем строении ничего не было известно. В основу Периодического закона Д.И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов. Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д.И. Менделеев получил естественный (природный) ряд химических элементов, в котором он обнаружил периодическую повторяемость химических свойств.

Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядра атома (порядкового номера элемента).

Периодическое повторение свойств элементов объясняется периодическим повторением числа электронов на внешнем энергетическом уровне и повторением электронных структур атомов. Итак, строение атомов обуславливает две закономерности:

а) изменение свойств элементов по горизонтали — в периоде слева направо ослабляются металлические и усиливаются неметаллические свойства;

б) изменение свойств элементов по вертикали — в группе с ростом порядкового номера усиливаются металлические свойства и ослабевают неметаллические.

Таким образом: по мере возрастания заряда ядра атомов химических элементов периодически изменяется строение их электронных оболочек, что является причиной периодического изменения их свойств.

 

Окислительно-восстановительные свойства элементов. Энергия (потенциал) ионизации. Энергия сродства к электрону. Электроотрицательность. Закономерность изменения окислительно-восстановительных свойств элементов в периодах и группах. Металлические и неметаллические элементы в периодической системе Д.И. Менделеева.

Передача электронов от атома к атому называется окислением-восстановлением. Окисляется тот атом, который отдает свои электроны, а принимающий электроны - восстанавливается.

Если в результате реакции получается ионное соединение, то положительно заряженный ион образовался из того элемента, который отдал свои электроны, а отрицательный ион - из элемента, который электроны принял.

Энергия (потенциал) ионизации атома Ei - минимальная энергия, необходимая для удаления электрона из атома на бесконечность в соответствии с уравнением Х = Х+ + е−. Энергия ионизации является св-вом частицы и не зависит от способа удаления электрона.

Сродство электрону частицы (молекулы, атома, иона) - минимальная энергия А, необходимая для удаления электрона из соответствующего отрицательного иона на бесконечность. Сродство атома к электрону Ae - способность атомов присоединять добавочный электрон и превращаться в отрицательный ион. Мерой сродства к электрону служит энергия, выделяющая или поглощающаяся при этом. Сродство к электрону равно энергии ионизации отрицательного иона.

Электротрицательность характеризует способность атома химического элемента смещать в свою сторону электронное облако при образовании химической связи (в сторону элемента с более высокой электроотрицательностью). Под электроотрицательностью элемента понимают относительную способность его атомов притягивать электроны при связывании с другими атомами.

ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.

При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.

При перемещении СПРАВА НАЛЕВО вдоль ПЕРИОДА МЕТАЛЛИЧЕСКИЕ свойства р-элементов УСИЛИВАЮТСЯ. В обратном направлении - возрастают неметаллические.

 

8.Ионная связь. Характеристика ионной связи и условие ее образования. Ненасыщаемость и не направленность ионной связи. Структура ионных соединений. Химическая формула ионного соединения.

Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью. Между образовавщимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер.

Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов (Dc > 2 ), когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом.

Электростатическое поле не имеет преимущественных направлений. Поэтому ионная связь в отличие от ковалентной не направлена. Ион взаимодействует с любым количеством ионов противоположного заряда. Этим обусловлено еще одно отличительное свойство ионной связи – ненасыщаемость.

Рассмотрим свойства ионной связи на примере хлорида натрия. Вследствие противоположности зарядов оба иона Na+и Сl- притягиваются друг к другу. Однако, сблизившись до определенного предела, они останавливаются на оптимальном расстоянии (r0), при котором притяжение уравновешивается взаимным отталкиванием их электронных оболочек.

Положительно и отрицательно заряженные ионы, образующие ионное соединение, представим в виде заряженных шариков, силовые поля которых равномерно распределяются в пространстве во всех направлениях. Отсюда первое свойство ионной связи - связь ненасыщенная.

Ненасыщаемость ионной связи приводит к тому, что все ионные соединения кристаллические вещества с высокими температурами плавления и кипения. Только в кристаллическом соединении за счет образования определенной кристаллической решетки, в которой каждый ион окружен рядом ионов противоположного знака, происходит компенсация силовых линий.

Второе свойство ионной связи заключается в том, что она ненаправленна. Нельзя указать направление, по которому ион хлора подходит к иону натрия, у каждого иона все направления равноценны, и с любой стороны один ион может подойти к другому. Если сравнить с ковалентной связью, в ковалентных молекулах взаимодействие между атомами происходит в направлении распространения электронного облака и ковалентные молекулы имеют определенную геометрическую конфигурацию, ионные молекулы такого свойства не имеют.

 

9.Метод валентных связей. Характеристика ковалентной связи. Изменение энергии системы при образовании ковалентной связи. Обменный и донорно-акцепторный механизмы образования ковалентной связи.

Метод валентных связей (МВС) иначе называют теорией локализованных электронных пар, поскольку в основе метода лежит предположение, что химическая связь между двумя атомами осуществляется с помощью одной или нескольких электронных пар, которые локализованы преимущественно между ними. В отличие от ММО, в котором простейшая химическая связь может быть как двух-, так и многоцентровой, в МВС она всегда двухэлектронная и обязательно двухцентровая. Число элементарных химических связей, которые способен образовывать атом или ион, равно его валентности. Так же, как и в ММО, в образовании химической связи принимают участие валентные электроны. Волновая функция, описывающая состояние электронов, образующих связь, называется локализованной орбиталью (ЛО).

Ковалентная связь возникает между атомами с относительно малыми различиями в электроотрицательностях, которые образуют химическую связь за счет общей электронной пары. Связь, образованная путем обобществления пары электронов связываемых атомов, называется ковалентной. Эта связь может рассматриваться как электростатическое притяжение ядер двух атомов к общей электронной паре. Ковалентная связь, в отличие от ионной, обладает определенной направленностью (от атома к атому).

Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер.

Минимум энергии молекулы отвечает строго определенному расстоянию между ядрами атомов. Если атомы в молекуле с помощью внешней силы сдвинуть еще ближе, то в действие вступает мощное отталкивание между одноименно заряженными ядрами атомов и общая энергия системы начинает быстро возрастать. Это невыгодно системе, поэтому длина связи представляет собой строго определенное, равновесное значение. Это свойство объясняется принципом наименьшей энергии. При образовании каждой дополнительной связи выделяется дополнительная энергия. Поэтому все валентные возможности реализуются полностью.

ОБМЕННЫЙ МЕХАНИЗМ - в образовании связи участвуют одноэлектронные атомные орбитали, т.е. каждый из атомов предоставляет в общее пользование по одному электрону: А.+.ВàА:В

ДOНОРНО-АКЦЕПТОРНЫЙ МЕХАНИЗМ - образование связи происходит за счет пары электронов атома-донора и вакантной орбитали атома-акцептора: А:+Вà А:В

При использовании обменного механизма образование связи рассматривается как результат спаривания спинов свободных электронов атомов. При этом осуществляется перекрывание двух атомных орбиталей соседних атомов, каждая из которых занята одним электроном. Таким образом, каждый из связываемых атомов выделяет для обобществления пары по электрону, как бы обмениваясь ими. например, при образовании молекулы трифторида бора из атомов три атомные орбитали бора, на каждой из которых имеется по одному электрону, перекрываются с тремя атомными орбиталями трех атомов фтора (на каждой из них также находится по одному неспаренному электрону). В результате спаривания электронов в областях перекрывания соответствующих атомных орбиталей появляется три пары электронов, связывающих атомы в молекулу.

По донорно-акцепторному механизму перекрывается орбиталь с парой электронов одного атома и свободная орбиталь другого атома. В этом случае в области перекрывания также оказывается пара электронов.

 

10.Ковалентная связь. Обменный механизм образования ковалентной связи. Ковалентность. Образование ковалентных связей возбужденным атомом. Насыщаемость ковалентной связи.

Ковалентность - мера способности атома к образованию ковалентных химических связей, возникающих за счёт двух электронов (по одному от каждого атома) и имеющих малополярный характер.

 

11. Ковалентная связь. Донорно-акцепторный механизм образования ковалентной связи. Электронная структура частиц-доноров и частиц-акцепторов. Образование комплексов и агрегатов молекул.

Кроме сил химического взаимодействия, приводящих к образованию валентных химических связей между атомами (образование молекул), в конденсированной (жидкой) фазе и кристаллах существуют дополнительные силы притяжения между молекулами. Энергия таких взаимодействий, названных взаимодействиями, на несколько порядков ниже энергии ковалентной связи. Наличие таких взаимодействий принципиально не меняет свойств молекул. Между этими двумя крайними случаями существуют взаимодействия, промежуточные по энергии, которые приводят к образованию молекулярных агрегатов, называемых комплексами или ассоциатами. К числу таких ассоциативных взаимодействий и принадлежит водородная связь (сокращенно H-связь). Благодаря водородным связям молекулы объединяются в ассоциаты.

 

Направлснность ковалентной связи. Сигма- и пи-связи. Кратные связи. Примеры молекул с кратными связями.

Сигма- и пи-связи (s- и p-связи), ковалентные химические связи, характеризующиеся определенней, но различной пространственной симметрией распределения электронной плотности. При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО - s-МО или p-МО - образующиеся связи относят к s- или p-типу.

сигма-связь - ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов.

пи-связь - ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.

s-Связь прочнее p-связи. Это обусловлено более эффективным перекрыванием АО при образовании s-МО и нахождением s-электронов между ядрами.

По s-связям возможно внутримолекулярное вращение атомов, т.к. форма s-МО допускает такое вращение без разрыва связи. Вращение по p-связи невозможно без ее разрыва!

Электроны на p-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с s-электронами. Поэтому поляризуемость p-связи значительно выше, чем s-связи.

Два атома между собой могут образовывать и кратные связи, то есть двойные и тройные. При этом составляющая, образующаяся первой, всегда будет сигма-связью (обладает наибольшей прочностью и определяет геометрическую форму молекулы).

Вторая и третья составляющие называются пи-связями, они образуются при боковом перекрывании любых орбиталей, кроме s-орбиталей.

Н2С=С=СН2, Н2С=СН—СН=СН2, HC≡CH.

 

Понятие о методе молекулярных орбиталей. Атомная и молекулярная орбитали. Связывающие и разрыхляющие орбитали. Правила и порядок заполнения молекулярных орбиталей. Электронная формула молекулы. Порядок связи.

Метод молекулярных орбиталей исходит из того, что каждую молекулярную орбиталь представляют в виде алгебраической суммы (линейной комбинации) атомных орбиталей. Например, в молекуле водорода в образовании МО могут участвовать только 1s атомные орбитали двух атомов водорода, которые дают две МО, представляющие собой сумму и разность атомных орбиталей. При использовании метода молекулярных орбиталей считается, в отличие от метода валентных связей, что каждый электрон находится в поле всех ядер. При этом связь не обязательно образована парой электронов. Например, ион Н2+ состоит из двух протонов и одного электрона. Между двумя протонами действуют силы отталкивания, между каждым из протонов и электроном - силы притяжения. Химическая частица образуется лишь в том случае, если взаимное отталкивание протонов компенсируется их притяжением к электрону. Это возможно, если электрон расположен между ядрами - в области связывания. В противном случае силы отталкивания не компенсируются силами притяжения - говорят, что электрон находится в области антисвязывания, или разрыхления.

Молекулярные орбитали - волновые функции электрона в молекуле или другой многоатомной химической частице. Каждая молекулярная орбиталь (МО), как и атомная орбиталь (АО), может быть занята одним или двумя электронами. Состояние электрона в области связывания описывает связывающая молекулярная орбиталь, в области разрыхления - разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит по тем же правилам, что и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали образуются при определенных комбинациях атомных орбиталей. Их число, энергию и форму можно вывести исходя из числа, энергии и формы орбителей атомов, составляющих молекулу. Молекулярная орбиталь - область наиболее вероятного пребывания электрона в электрическом поле двух (или более) ядер атомов, составляющих молекулу.

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Заполнение молекулярных орбиталей происходит в соответствии с принципом наименьшей энергии и принципом Паули, по два электрона размещаются на а- и по четыре на вырожденных я- и 8-орбиталях. Порядок, в котором возрастают энергии МО, устанавливается при исследовании молекулярных спектров и другими экспериментальными методами, а также при помощи квантовомеханических расчетов.

Для изображения электронного строения молекул, ионов или радикалов используются электронные формулы. При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа - октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т.е. 2 валентных электрона.

Чем выше кратность связи, тем короче межатомное расстояние. Связь может быть одинарной либо кратной (двойной, тройной и т.д.).

 

Комплексные соединения. Образование комплексов. Комплексообразователь, лиганды, координационное число, заряд комплекса. Внутренняя и внешняя сфера комплексного соединения.

Комплексные соединения (лат. complexus — сочетание, обхват), иногда называемые координационными — соединения, или ионы, которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.

Лиганд (от лат. ligo — связываю) — атом, ион или молекула, непосредственно связанная с одним или несколькими центральными (комплексообразующими) атомами в комплексном соединении. Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи.

Таким образом, комплексным соединением называют сложное соединение, образующееся при взаимодействии более простых неизменных частиц (атомов, ионов или молекул), каждая из которых способна существовать независимо в обычных условиях.

Комплексные ионы образуют с ионами противоположного заряда комплексные соединения. Так, комплексный ион [Fe(CN)6]3- образует с ионами K+ комплексное соединение K3[Fe(CN)6], которое выделяется из водного раствора при его выпаривании в виде кристаллов красного цвета, хорошо растворимых в воде.

Координационное число — общее число нейтральных молекул и ионов, связанных с центральным ионом в комплексе; например, для комплексного соединения K2[PtCl6] , Координационное число иона платины равно шести; для соединения [Cu(NH3)4]SO4 координационное число ионов меди равно четырем.

 

Конденсированное состояние вещества. Агрегатные и фазовые состояния, их отличительные признаки. Аморфное и кристаллическое состояние твердого тела. Кристаллическая решетка и элементарная ячейка кристалла. Реальные кристаллы.

Любое вещество может находиться в одном из четырех агрегатных состояниях: твердом, жидком, газообразном или в виде плазмы. При низких температурах и(или) высоких давлениях все вещества находятся в твердом состоянии. Твердое и жидкое состояние вещества называют конденсированным состоянием.

Агрегатное состояние — термодинамическое состояние вещества, сильно отличающееся по своим физическим свойствам от других агрегатных состояний этого же вещества. Термин «агрегатное состояние» довольно размытый и часто слишком огрубляет свойства вещества. Так, почти все вещества в твёрдом агрегатном состоянии могут обладать, в зависимости от давления и температуры, несколькими различными термодинамическими фазами. Отличие понятия агрегатного состояния вещества от термодинамической фазы заключается в выделенном выше слове «сильно». Как правило, требуется, чтобы агрегатные состояния «выглядели» сильно по-разному. Термодинамические же фазы могут отличаться «незаметными глазу» величинами, такими как теплоёмкость, структура кристаллической решётки и т. д. Однако при аккуратном рассуждении рекомендуется использовать именно термин «термодинамические фазы».

твёрдое тело (аморфное либо кристаллическое), держит как форму, так и объём.

жидкость, характеризуется более высокой плотностью и промежуточными температурами. Жидкость держит объём, но не держит форму.

газообразное состояние, характеризуется низкой плотностью и достаточно высокой температурой. Газ не держит ни форму, ни объём.

плазма (часто называемое четвёртое состояние вещества), представляет собой частично или полностью ионизованный газ и возникает при высокой температуре, от нескольких тысяч кельвинов и выше. В целом её свойства напоминают свойства газообразного состояния вещества, за исключением того факта, что для плазмы принципиальную роль играет электродинамика.

Термодинамическая фаза — термодинамически однородная по составу и свойствам часть термодинамической системы, отделенная от других фаз поверхностями раздела, на которых скачком изменяются некоторые свойства системы. В однокомпонентной системе разные фазы могут быть представлены различными агрегатными состояниями или разными полиморфными модификациями вещества. В многокомпонентной системе фазы могут иметь различный состав и структуру.

Твердое тело характеризуется тем, что в нем возникают значительные упругие силы не только при изменении объема (сжатие и расширение), но и при изменении формы (например, сдвиг). Твердые тела могут существовать в двух существенно различных состояниях, отличающихся своим внутренним строением, и, соответственно, свойствами. Это кристаллическое и аморфное состояние твердых тел. Кристаллическое состояние характеризуется наличием четко выделяемых естественных граней, образующих между собой определенные углы. Примерами веществ в кристаллическом состоянии могут служить соль, сахарный песок, сода и др. Если весь кусок вещества представляет собой один кристалл, то такое тело называется монокристаллом или просто кристаллом. Наличие естественных граней у монокристаллов ведет к четко выраженному различию в физических свойствах тела по различным направлениям. Это может относиться к механической прочности, тепло- и электропроводности, упругости и т.д. Но не всегда все свойства зависят от направления - кубический кристалл меди обладает одинаковой электропроводностью по всем направлениям, но разной упругостью. Кристаллы - твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.

Второй вид твердого состояния твердых тел - аморфное состояние. В этом состоянии невозможно обнаружить даже малые области, в которых наблюдалась бы зависимость физических свойств от направления. Некоторые вещества могут находиться в любом из этих двух состояний. Аморфные вещества не имеют кристаллической структуры и в отличие от кристаллов не расщепляются с образованием кристаллических граней, как правило — изотропны, т. е. не обнаруживают различных свойств в разных направлениях, не имеют определенной точки плавления. К аморфным веществам принадлежат стекла, естественные и искусственные смолы, клеи и др.

Кристаллическая решётка, присущее веществу в кристаллическом состоянии правильное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях. Ввиду такой периодичности для описания К. р. достаточно знать размещение атомов в элементарной ячейке, повторением которой путём параллельных дискретных переносов (трансляций) образуется вся структура кристалла. В соответствии с симметрией кристалла элементарная ячейка имеет форму косоугольного или прямоугольного параллелепипеда, квадратной или шестиугольной призмы, куба. Размеры рёбер элементарной ячейки а, b, с называются периодами идентичности. Существует огромное количество кристаллических структур. Их объединяет главное свойство кристаллического состояния вещества — закономерное положение атомов в кристаллической решётке. Одно и то же вещество может кристаллизоваться в разных кристаллических решётках и обладать весьма различными свойствами (классический пример графит — алмаз).

В отличие от идеального кристалла, структура, которого принимается непрерывной, а состав неизменным во всем объеме, строение и состав реальных кристаллов изменяются как во времени так и в пространстве. В идеализированных структурах кристаллов атомы занимают строго определённые положения, образуя правильные трёхмерные решётки (кристаллические решётки). В реальных кристаллах наблюдаются обычно различные отступления от правильного расположения атомов или ионов (или их групп). Такие нарушения могут быть либо атомарного масштаба, либо макроскопических размеров, заметные даже невооружённым глазом.

 

Скорость химических реакций. Скорость гомогенной и гетерогенной реакции. Зависимость скорости реакции от концентрации реагентов. Кинетическое уравнение гомогенной и гетерогенной реакции. Зависимость скорости реакции от температуры. Правило Вант-Гоффа и уравнение Аррениуса.

Скорость химической реакции - это величина, показывающая как изменяются концентрации исходных веществ или продуктов реакции за единицу времени. Скоростью образования продукта реакции называется количество этого продукта, возникающее в результате реакции за единицу времени в единице объёма (если реакция гомогенна) или на единице площади поверхности (если реакция гетерогенна).

При рассмотрении скорости необходимо различать реакции, протекающие в гомогенной и гетерогенной системе. Гомогенной системой называется система, состоящая из одной фазы. Гетерогенная система состоит из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком. Если реакция идет в гомогенной системе, то она идет во всем объеме этой системы. Если реакция протекает в гетерогенной системе, то она может идти только на поверхность раздела. В связи с этим скорость определяется различно. Скорость гомогенной реакции определяется количеством вещества, вступающего в реакцию или образующегося при реакции в единицу времени в единице объема.

Скорость гетерогенной реакции определяется количеством вещества, вступившего в реакцию или образовавшегося в результате реакции за единицу времени на единице поверхности фазы. Скорость химической реакции зависит от природы реагирующих веществ и условий протекания реакции, важнейшими из которых являются концентрация, температура и присутствие катализатора.

Чтобы осуществить химическое взаимодействие, необходимо, чтобы вещества А и В столкнулись. Чем больше столкновений, тем быстрее идет реакция. Число столкновений тем выше, чем больше концентрация. Следовательно, скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Для реакции A +B = C + D этот закон выразится уравнением:

V = k•c[A]•c[D]. Этот закон химической кинетики назван законом «Действующих масс». Константа скорости k зависит от природы реагирующих веществ и температуры, но не зависит от концентрации!

Зависимость скорости реакции от температуры отражается правилом Вант-Гоффа: при повышении температуры на каждые 10 градусов скорость большинства химических реакций увеличивается в 2-4 раза .Правило Вант-Гоффа является приближенным и применимо лишь для ориентировочной оценки влияния температуры на скорость реакции. Изменение скорости под действием температуры связано с тем, что неактивные молекулы превращаются в активные, обладающие энергией для осуществления данной реакции. Эта энергия называется энергией активации.

Кинетическое уравнение реакции – уравнение, выражающее зависимость скорости реакции от концентрации реагирующих веществ:V (AB) = k* [A]^a[B]^b. Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов. Это определение относится к гомогенным реакциям. Если реакция геторогенная (реагенты находятся в разных агрегатных состояниях), то в уравнениие ЗДМ входят только жидкие или только газообразные реагенты, а твердые исключаются, оказывая влияние только на константу скорости k. Константа скорости k численно равна скорости, если концентрации реагентов постоянны и равны единице.

Уравнение Аррениуса устанавливает зависимость константы скорости химической реакции k от температуры T. Согласно простой модели столкновений химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекул этих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённый энергетический барьер, чтобы молекулы начали друг с другом реагировать. Т. е. молекулы должны обладать некой минимальной энергией (энергия активации EA), чтобы этот барьер преодолеть.

k=A*e^(-Ea/R*T)

 

Химическое равновесие. Термодинамическое и кинетическое условия химического равновесия. Смещение равновесия. Принцип Ле Шателье. Смещение равновесия при изменении состава системы, температуры и давления.

Смещение химического равновесия при изменении условий описывается принципом Ле-Шателье.

«Если на систему, находящуюся в состоянии химического равновесия, оказывать внешнее воздействие (изменять температуру, давление, концентрации веществ), то положение равновесия смещается в такую сторону, чтобы ослабить внешнее воздействие». В любом случае равновесие будет смещаться до тех пор, пока не наступит новое положение равновесия, которое соответствует новым условиям. Этот принцип позволяет легко предсказать качественные изменения в равновесной системе при изменении условий.

При изменении внешних условий равновесие реакции смещается таким образом, чтобы уменьшить это воздействие.

Смещение равновесия при изменении температуры. В случае экзотермической реакции (протекающей с выделением тепла) равновесие смещается влево (в сторону исходных веществ) при повышении температуры, и вправо (в сторону продуктов реакции) при понижений температуры.

В случае эндотермической реакции (протекающей с поглощением тепла) равновесие смещается вправо при повышении температуры и влево при понижении температуры.

Смещение равновесия при изменении давления. Если реакция протекает с увеличением числа молекул газообразных веществ, при повышении давления равновесие смещается влево, а при понижении давления вправо.

Если реакция протекает с уменьшением числа молекул газообразных веществ, то при повышении давления равновесие смещается вправо, а при понижений давления влево.

Если реакция протекает без изменения числа молекул газообразных веществ, то при изменении давления равновесие не смещается.

Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Увеличение концентраций исходных веществ [A] или [Б] или [А] и [Б]: V1 > V2.

Катализаторы не влияют на положение равновесия.

 

Кислоты и основания. Электролитическая диссоциация кислот и оснований. Сильные и слабые кислоты и основания. рН водных растворов кислот и оснований. Характеристика современных теорий кислот и оснований.

Кислоты - это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных ионов не образуют.

Сильные кислотыHCl, HBr, HI, HClO4, H2SO4, H2SeO4, HNO3, HMnO4, H2Cr2O7 и т.п.

Слабые кислотыHF, H2S, HCN, HClO, HNO2, H3PO4, H2CO3, CH3COOH, H4SiO4 и другие

Основания - это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют.

Диссоциация малорастворимых оснований Mg(OH)2, Cu(OH)2, Mn(OH)2, Fe(OH)2 и других практического значения не имеет. К сильным основаниям (щелочам) относятся NaOH, KOH, Ba(OH)2 и некоторые другие. Самым известным слабым основанием является гидрат аммиака NH3 · H2O.

Кислоты являются, наряду с растворимыми основаниями (щелочами) и растворимыми солями , электролитами, то есть, веществами, растворы или расплавы которых проводят электрический ток. Понятие "сильная" или "слабая" кислота является характеристикой кислоты как сильного или слабого электролита. На "сильные" и "слабые" электролиты делятся в зависимости от степени диссоциации.

Степень диссоциации (альфа) показывает, какая часть молекул распалась на ионы.

Альфа (степень диссоциации) =отношению числа молекул, которые распались на ионы, к общему числу молекул в растворе: альфа=n/N, альфа%=n/N*100%.

В абсолютно чистой воде, не содержащей даже растворенных газов, концентрации ионов Н+ и ОН– равны (раствор нейтрален). В других случаях эти концентрации не совпадают: в кислых растворах преобладают ионы Н+, в щелочных – ионы ОН–. Но их произведение в любых водных растворах постоянно. Поэтому если увеличить концентрацию одного из этих ионов, то концентрация другого иона уменьшится во столько же раз. Так, в слабом растворе кислоты, в котором [H+] = 10–5 моль/л, [OH–] = 10–9 моль/л, а их произведение по-прежнему равно 10–14. Аналогично в щелочном растворе при [OH–] = 3,7Ч10–3 моль/л [H+] = 10–14/3,7Ч10–3 = 2,7Ч10–11 моль/л. При комнатной температуре в нейтральных растворах рН = 7, в кислых растворах рН < 7, а в щелочных рН > 7.

Одна из основных современных теорий кислот и оснований — электронную (её второе название — теория Льюиса). Согласно ей, кислота — вещество, принимающее электронные пары, то есть акцептор электронных пар, а основание — вещество, отдающее электронные пары, то есть донор электронных пар (в химии такие соединения получили названия соответственно кислот и оснований Льюиса). Современной теорией кислот и оснований является протонная теория Бренстеда – Лаури, которая объясняет проявление веществами кислотной или основной функции тем, что они вступают в реакции протолиза – реакции обмена протонами (катионами водорода) Н+. Согласно этой теории кислота – это протонсодержащее вещество НА, являющееся донором своего протона; основание – вещество Е, акцептирующее протон, отданный кислотой. В общем случае реагент – кислота и реагент – основание , а также продукт – основание и продукт – кислота конкурируют между собой за обладание протоном, что приводит обратимую кислотно-основную реакцию к состоянию протолитического равновесия.

 

Растворы солей. Средние (нормальные), кислые и основные соли. Электролитическая диссоциация солей. Гетерогенные равновесия в растворах труднорастворимых солей. Произведение растворимости. Гидролиз солей.

Продуктами полного замещения являются средние соли, например. Na2SO4, MgCl2, неполного-кислые или основные соли, например KHSO4, СuСlOН. Различают также простые соли, включающие один вид катионов и один вид анионов (например, NaCl), двойные соли содержащие два вида катионов (например, KAl(SO4)2 •12H2O), смешанные соли, в составе которых два вида кислотных остатков (например, AgClBr). Комплексные соли содержат комплексные ионы, например K4[Fe(CN)6].

Средние соли - продукты полной нейтрализации кислот основаниями:

3Ba(OH)2 + 2H3PO4 = Ba3(PO4)2↓ + 6H2O

Кислые соли - продукты неполной нейтрализации:

Ba(OH)2 + 2H3PO4 = Ba(H2PO4)2 + 2H2O

Ba(OH)2 + H3PO4 = BaHPO4↓ + 2H2O

Основные соли - продукты неполной нейтрализации:

Co(OH)2 + HNO3 = CoNO3(OH) + H2O

Известны также соли, содержащие два химически разных катиона (двойные соли) или аниона (смешанные соли).

Соли - это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н+ и любые анионы, кроме OH−. После растворения и диссоциации средних и кислых солей их катионы и/или анионы могут далее взаимодействовать с водой - подвергаться обратимому гидролизу; за счет последнего процесса в растворах многих солей появляются катионы Н+ и/или анионы OH−.

ПР AmBn = [A]m [B]n.

Взаимодействие ионов соли с водой, приводящее к образованию молекул слабого электролита, называют гидролизом солей.

Различают несколько вариантов гидролиза солей:

1. Гидролиз соли слабой кислоты и сильного основания:

Na2CO3 + Н2О = NaHCO3 + NaOH

CO32- + H2O = HCO3- + OН-

2. Гидролиз соли сильной кислоты и слабого основания:

СuСl2 + Н2О = CuClOH + HCl

Cu2+ + Н2О = CuOH+ + Н+

3. Гидролиз соли слабой кислоты и слабого основания:

Al2S3 + 6H2O = 2Al(OН)3 + 3H2S

2Аl3+ + 3S2- + 6Н2О = 2Аl(OН)3 + ЗН2S

Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален.

 

Растворы комплексных соединений. Характеристика комплексных соединений. Первичная и вторичная диссоциация комплексных соединений. Константа нестойкости комплекса. Комплексные кислоты, основания и соли.

Комплексные соединения, иногда называемые координационными — соединения, или ионы, которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Ядро К. с. (комплекс) составляет центральный атом - комплексообразователь (в приведённом примере Fe) и координированные, т. е. связанные с ним, молекулы или ионы, называемые лигандами (в данном случае кислотный остаток CN). Лиганды составляют внутреннюю сферу комплекса.

Комплексные соединения катионного и анионного типа чаще всего растворимы в воде; в их водных растворах устанавливаются химические равновесия, иногда довольно сложные. Комплексы-неэлектролиты, как правило, малорастворимы в воде; растворившаяся часть комплексов ведет себя как слабый электролит. При первичной диссоциации комплекса, имеющего ионы внешней сферы, соединение ведет себя как сильный электролит – полностью отщепляет ионы внешней сферы. Затем происходит вторичная диссоциация комплекса уже по типу слабого электролита – отщепляются лиганды внутренней сферы.

Если вместо равновесия в реакциях образования комплексов рассматривать обратный процесс – реакции диссоциации комплексов (или реакции обмена лигандов на молекулы растворителя), то соответствующие константы будут носить название ступенчатых констант нестойкости комплексов.

Комплексные кислоты. Данная товарная позиция также включает комплексные кислоты, состоящие из двух или более минеральных кислот, не содержащих металлы (например, хлорзамещенные кислоты), или из кислоты, образованной неметаллом, и кислоты, образованной металлом (например, кремневольфрамовая кислота или боровольфрамовая кислота), не включенные в другие товарные позиции данной группы.

Гидроксокомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют гидроксильные группы, которые до вхождения в состав комплексной частицы были гидроксид-ионами.

Комплексные соли — особый класс солей. Это сложные вещества, в структуре которых выделяют координационную сферу, состоящую их комплексообразователя (центральной частицы) и окружающих его лигандов.

 

Ионные реакции в растворах. Характеристика ионных реакций. Условие протекания реакции ионного обмена. Молекулярное и ионно-молекулярное уравнение реакции ионного обмена. Направление реакций ионного обмена.

Реакции ионного обмена - это реакции между ионами, образовавшимися в результате диссоциации электролитов. Простые ионные реакции без переноса электронов происходят, когда один из продуктов нерастворим (газ или твердое вещество) или является ковалентно связанным веществом, остающимся в растворе. Отличительной особенностью реакции ионного обмена от окислительно-восстановительных реакций является то, что они протекают без изменения степеней окисления, участвующих в реакции частиц.

Условия, при которых реакции ионного обмена протекают до конца:

1. Образуются малодиссоциирующие вещества (слабые электролиты).

2. Нерастворимые и газообразные вещества.

3. Если в результате реакции выделяется газообразное вещество.

 

Характеристика окислительно-восстановительного процесса. Окисление и восстановление, окислитель и восстановитель. Изменение степени окисления элементов при окислении и восстановлении. Уравнение окислительно-восстановительного процесса. Обратимость окислительно-восстановительного процесса.

Окислительно-восстановительные реакции — это химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующимся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

Окислительно-восстановительными (или редокc-реакциями) называются реакции, сопровождающиеся переносом электронов от донора к акцептору. По аналогии с кислотно-основными реакциями взаимодействующие вещества образуют сопряженные пары, которые принято называть окислительно-восстановительными парами. В ходе редокс-реакции восстановленная форма одной редокс-пары (восстановитель) переносит электроны на окисленную форму (окислитель) другой пары. При этом восстановитель окисляется, а окислитель восстанавливается.

Окислитель — вещество, в состав которого входят атомы, присоединяющие во время химической реакции электроны, иными словами, окислитель — это акцептор электронов.

Восстановитель – вещество, отдающее во время химической реакции электроны.

Восстановлением называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.

При окислении вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества, назваются донорами электронов, а атомы окислителя — акцепторами электронов.

Критерий полноты ОВР (или критерий химической необратимости ОВР). Степень полноты протекающей в прямом направлении реакции при Δφо > 0 зависит от величины Δφо. Чтобы реакция протекала практически нацело или "до конца", т.е. до исчерпания по меньшей мере одной из исходных частиц (ионов, молекул), или, иначе говоря, чтобы она была химически необратимой, нужно, чтобы разность стандартных потенциалов была достаточно велика. Заметим, что любая реакция, независимо от ее химической обратимости, всегда термодинамически необратима, если она протекает в пробирке или ином химическом реакторе, т.е. вне обратимого гальванического элемента или иного специального устройства).

 

Окислитсльно-восстановительные реакции. Отличительный признак окислительно-восстановительных реакций. Характеристика процессов окисления и восстановления, окислителя и восстановителя. Методы составления уравнений окислительно-восстановительных реакций.

Химические реакции, при которых происходит существенное перераспределение электронной плотности, сравнимое с переходом электрона от одного атома к другому, относят к окислительно-восстановительным реакциям. Оценить же, насколько значительны изменения электронной структуры атомов при химической реакции, можно, используя понятия электроотрицательность и степень окисления.

 

Термодинамика окислительно-восстановительных процессов. Уравнение окислительно-восстановительного процесса. Направление самопроизвольного протекания окислительно-восстановительного процесса. Уравнение Нернста.

Окислительно-восстановительные реакции удобно представлять в виде суммы двух полуреакций, аналогичных тем, которые использовались для иллюстрации перемещения электронов между ионами натрия и хлора. Каждая полуреакция характеризуется электродным окислительно-восстановительным потенциалом, величиной которого определяется легкость передачи электронов. Этот потенциал зависит не только от природы соединения, но также от его концентрации, концентрации других веществ, вступающих в реакцию, и от температуры.

Уравнение Нернста связывает окислительно-восстановительный потенциал системы с концентрациями веществ, входящих в электрохимическое уравнение, и стандартными потенциалами окислительно-восстановительных пар. φ(Ox/Red) = φo(Ox/Red) + RT/(nF) ln [Ox]/[Red]. Если рассматривается изменение потенциала по мере протекания реакции, то сначала это начальные концентрации, затем концентрации, зависящие от времени, и, наконец, после прекращения реакции, равновесные.

По мере протекания реакции вычисляемый по уравнению Нернста потенциал окислителя уменьшается, а отвечающий второй полуреакции потенциал восстановителя, напротив, увеличивается. Когда эти потенциалы выравниваются, реакция прекращается, и система приходит в состояние химического равновесия.

Критерий направления реакции в стандартных условиях. Если в реакционной смеси присутствуют как исходные вещества, так и образуемые ими при протекании ОВР продукты реакции или, иначе говоря, два окислителя и два восстановителя, то направление реакции определяется тем, какой из окислителей в данных условиях в соответствии с уравнением Нернста окажется более сильным. Особенно просто определяется направление реакции в стандартных условиях, когда все участвующие в ней вещества (частицы) находятся в своих стандартных состояниях. Более сильным в этих условиях, очевидно, оказывается окислитель той пары, которая характеризуется более высоким стандартным потенциалом.

Хотя направление реакции в стандартных условиях этим однозначно определено, мы, заранее не зная его, можем написать уравнение реакции или правильно (реакция в стандартных условиях действительно идет в принятом нами, т.е. в прямом направлении) или неправильно (реакция идет в обратном принятому нами направлении). Любая запись уравнения ОВР предполагает определенный выбор окислителя в левой части уравнения. Если в стандартных условиях этот окислитель сильнее, реакция пойдет в прямом направлении, если нет – в обратном.

 

45. Электродные потенциалы. Электрод. Абсолютный и относительный электродный потенциалы. Водородная шкала относительных электродных потенциалов. Факторы, влияющие на величину относительного электродного потенциала (уравнение Нернста).

Электродный потенциал — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение электродного потенциала обусловливается переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Электрод - часть электрохимической системы, включающая в себя (металлический) проводник и окружающий его раствор (например, Водородный электрод, Хлорсеребряный электрод, Электрод сравнения). Проводник, посредством которого часть электрической цепи, образуемая проводами, соединяется с частью цепи, проходящей в неметаллической среде (ионной жидкости, ионизированном газе и т.п.).

Положительный электрод – анод.

Отрицательный электрод – катод.

Если электродная реакция, записанная в сторону восстановления, является самопроизвольной, то потенциал электрода положителен.

Электродный потенциал в электрохимии - разность электрических потенциалов на границе фаз электрод - электролит. На практике пользуются значениями т. н. относительного электродного потенциала, равного разности электродного потенциала, данного электрода и электрода сравнения (напр., нормального водородного). Абсолютное значение электродного потенциала измерить невозможно, поэтому измеряют всегда разность электродных потенциалов — относительный электродный потенциал. Если электродная реакция проходит в равновесных обратимых условиях (при токе, стремящемся к нулю), скачок потенциала между электродом и электролитом называют равновесным потенциалом.

 

Стандартный электродный потенциал. Стандартный водородный электрод. Ряд стандартных электродных потенциалов. Количественная характеристика активности окислителей и восстановителей величинами стандартных электродных потенциалов.

Стандартный электродный потенциал (нормальный электродный потенциал) — потенциал электрода в растворе, в котором ионы, определяющие электродный процесс, имеют активность, равную единице. Величины стандартного электродного потенциала измеряются относительно стандартного (нормального) водородного электрода, потенциал которого условно принимается равным нулю и выражается в вольтах.

Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную в раствор, содержащий ионы водорода. Потенциал платины зависит от концентрации ионов [Н+] в растворе. Электрод является эталоном, относительно которого ведется отсчет электродного потенциала определяемой химической реакции. При давлении водорода 1 атм., концентрации протонов в растворе 1 моль/л и температуре 298 К потенциал ВЭ принимают равным 0 В. При сборке гальванического элемента из ВЭ и определяемого электрода, на поверхности платины обратимо протекает реакция: 2Н+ + 2e- = H2 то есть, происходит либо восстановление водорода, либо его окисление - это зависит от потенциала реакции, протекающей на определяемом электроде. Измеряя ЭДС гальванического электрода при стандартных условиях (см. выше) определяют стандартный электродный потенциал определяемой химической реакции.

 

СТРОЕНИЕ ВЕЩЕСТВА.

 

Квантово-механическая модель атома. Состав атома. Волновые свойства электрона. Волновое уравнение и волновая функция. Атомная орбиталь, основные типы атомных орбиталей.

Разработчиком модели был Бор. Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Однако электроны могут переходить на другую разрешенную орбиту. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». Если электрон перескакивает на более низкую орбиту, он теряет энергию и, соответственно, испускает квант света — фотон фиксированной энергии с фиксированной длиной волны. Для перехода на более высокую орбиту электрон должен, соответственно, поглотить фотон.

Современная физика так и представляет себе атом: тяжелое ядро с расположенным вокруг него электронным облаком сложной структуры. Это облако является сплошным и непрерывным. Определить, где, в каких его точках в данный момент находятся электроны, невозможно. Это связано с тем, что, во-первых, пока что нет средств для такого наблюдения, во-вторых, электроны внутри атома проявляют двойственную природу: будучи, с одной стороны, элементарными частицами, они, находясь в составе атомов, ведут себя так же как волны.

Волновые свойства присущи каждому электрону в отдельности, а не только системе из большого числа частиц. Волновые свойства электронов были экспериментально обнаружены Джорджем Томсоном уже в 1927 г. Он наблюдал дифракцию электронов при прохождении их через тонкую золотую фольгу. На экране, который фиксировал прошедшие электроны, обнаруживалась картина дифракционных колец, аналогичная той, что бывает при дифракции волн. Зависимость длины волны электрона от его импульса (т.е. от скорости) совпала с предсказанной де Бройлем.

Волнова ́ я фу ́ нкция (функция состояния, пси-функция, амплитуда вероятности) — комплексная функция, используемая в квантовой механике для вероятностного описания состояния квантовомеханической системы. В широком смысле — то же самое, что и вектор состояния. Вектор состояния — основное понятие квантовой механики, математический вектор, задание которого в определённый момент времени полностью определяет состояние квантовой системы и, если известны взаимодействия, его эволюцию в дальнейшем.

Атомная орбиталь — геометрическое представление о движении электрона в атоме; движение электрона в атоме отличается от классического движения по траектории, а описывается законами квантовой механики. томные орбитали (АО) разных типов отличаются друг от друга формой и энергией и обозначаются символами: s, p, d, f и т.д. Атомные орбитали s-типа имеют форму сферы. р-АО имеют форму объемной восьмерки (гантели), направленной по оси x, y или z. Энергия орбитали возрастает по мере удаления электрона от ядра атома (т.е. с увеличением номера электронного уровня).

 

Квантовые числа. Главное квантовое число, энергетические уровни. Орбитальное квантовое число, энергетические подуровни. Магнитное квантовое число, количество атомных орбиталей в энергетическом подуровне. Спин электрона.

Квантовые числа – целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным.

Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n, тем выше энергия и больше размер орбитали. Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K, L, M, N... (для n = 1, 2, 3, 4...).

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n−1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s, p, d, f.

Каждый период начинается элементом, в атоме которого впервые появляется электрон с данным значением n (водород или щелочной элемент), и заканчивается элементом, в атоме которого до конца заполнен уровень с тем же n (благородный газ). Первый период содержит всего два элемента, второй и третий - по восемь (малые периоды). Начиная с четвертого, периоды называют большими, так как в них появляются d- и f-элементы: четвертый и пятый периоды включают по 18 элементов, шестой - 32. Седьмой период еще не завершен, но он, как и шестой, должен содержать 32 элемента.

Магнитное квантовое число ml отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число ml может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р-орбитали (l = 1) могут быть ориентированы тремя способами (ml = -1, 0, +1).

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым) ms, которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы.

Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом ms, которое может быть равно +1/2 и −1/2.

Совокупность состояний электрона в атоме с одним и тем же значением n называют энергетическим уровнем. Число уровней, на которых находятся электроны в основном состоянии атома, совпадает с номером периода, в котором располагается элемент. Номера этих уровней обозначают цифрами: 1, 2, 3,... (реже - буквами K, L, M, ...).

Энергетический подуровень - совокупность энергетических состояний электрона в атоме, характеризующихся одними и теми же значениями квантовых чисел n и l. Подуровни обозначают буквами: s, p, d, f... Первый энергетический уровень имеет один подуровень, второй - два подуровня, третий - три подуровня и так далее.

 

Дата: 2019-07-30, просмотров: 199.