Расчёт основных параметров пароструйного эжектора
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

3.4.1Как уже отмечалось выше, для повышения потенциала используемого в установке пара с низкими параметрами устанавливается пароструйный эжектор. Принимаем в качестве рабочего пар 40 с параметрами P=4,0 МПа и t=375 оС. Схема пароструйного эжектора представлена на рисунке 10.


 

A – рабочее сопло; B – приемная камера; C – камера смешения; D - диффузор

Рисунок 10 - Схема пароструйного эжектора.

 

3.4.2 Исходные данные для расчёта

3.4.2.1 Температура рабочего пара tр=375оC.

3.4.2.2 Давление рабочего пара Рр=4,0 МПа.

3.4.2.3 Температура эжектируемого пара tн=70оС.

3.4.2.4 Давление эжектируемого пара Pн=3,1161´104 Па.

3.4.2.5 Температура смеси на выходе tс=101оС.

3.4.2.6 Давление смеси на выходе Рс=0,0981МПа=1ата.

3.4.2.7 Коэффициент эжекции u=9.

 

3.4.3 По таблице 4-1 [23] для перегретого пара найдем показатель адиабаты рабочего пара kр=1,3.

3.4.4 Газовая постоянная для водяного пара R=463 Дж/кг (таблица 1-2 [23]).

 

3.4.5 Определим величину относительного давления Прн

3.4.6 Определим по таблице приложения 4 [23] газодинамические функции рабочего пара с учётом найденной величины Прн

3.4.6.1 Приведённая изоинтропная скорость lрн=2,41.

3.4.6.2 Относительная плотность eрн=0,02288.

3.4.6.3 Приведённая массовая скорость qрн=0,0831.

 

3.4.7 Определяем отношение uc/uр и uн/uр

 

 

где uр=0,06997 м3/кг, uн=5,0479 м3/кг, uс=1,735 м3/кг – удельный объём соответственно рабочего пара, инжектируемого пара и смеси.

3.4.8 Определим оптимальное отношение сечения f3 к критическому сечению сопла fр* по формуле (4-20) [23]

 

 

3.4.8.1 Вычислим параметр а

 

где j1=0,95 и j2=0,975 – коэффициенты скорости газоструйного эжектора (стр. 151 [23]).

 

 


3.4.8.2 Вычислим параметр b

где j3=0,9 и j4=0,925 - коэффициенты скорости газоструйного эжектора (стр. 151 [17]).

3.4.8.3 Параметр с

 

 

3.4.8.4 Тогда отношение (f3/fр*)опт

 

 

3.4.9 Вычислим давление смешанного потока в выходном сечении камеры смешения Р3

 

3.4.9.1 По формуле (4-39) определим перепад давлений инжектируемого потока на входном участке камеры смешения DРкн

 

 

где eр*=0,628 и Пр*=0,55 – критическое значение относительной плотности и критическое относительное давление при заданном показателе адиабаты рабочего потока.

3.4.9.2 По формуле (4-43) определим отношение перепада давлений смешанного потока в диффузоре и перепада давлений инжектируемого потока на входном участке камеры смешения DРд/DРк


 

3.4.9.3 Отношение DРдн

 

 

3.4.9.4 Отношение давления смешанного потока к давлению эжектируемого пара по формуле на странице 161 [17]

3.4.9.4 Тогда давление смешанного потока в выходном сечении камеры смешения Р3

 

Р3н´3,6=3,6´31161=112180 Па=112,18кПа.

 

3.4.10 Рассчитываем характеристику выбранного эжектора

3.4.10.1 Предварительно находим отношение fр1/f3

 

 

 

3.4.10.2 Отношение fр*2/f3´fн2

 

 

3.4.11 Произведём расчёт основных размеров эжектора

3.4.11.1 По формуле (1-20) найдём критическую скорость рабочего потока ар*

 

 

где Тр=648 К – абсолютная температура рабочего пара.

3.4.11.2 Критическое сечение рабочего сопла по формуле (2-42) fр*

 

 

3.4.11.3 Критический диаметр dр*

 

 

3.4.11.4 Выходное сечение сопла fр1

 

 

3.4.11.5 Выходной диаметр сопла d1

 

 

3.4.11.6 Площадь сечения камеры смешения f3

 

3.4.11.7 Диаметр камеры смешения d3

 

 

3.4.11.8 Длина свободной струи по формуле (2-55) lс1

 

 

где а=0,08 – опытная константа для упругих сред (стр.50 [23]).

3.4.11.9 Диаметр свободной струи d4 на расстоянии lс1 от выходного сечения сопла по формуле (2-56)

 

d4=1,55´d1´(1+u)=1,55´41´10-3´(1+9)=0,636 м=636мм.

 

3.4.11.10 Так как d4=363 мм>d3=254 мм, то входной участок камеры смешения выполняется в виде конического перехода, на котором диаметр изменяется от 363 мм до 254 мм.

3.4.11.11 При угле раствора 900 длина входного участка камеры смешения lс2

 

lс2=d4-d3=(363-254)´10-3=0,109 м=109 мм.

 

3.4.11.12 Расстояние от выходного сечения рабочего сопла до входного сечения цилиндрической камеры смешения lc

 

lc=lс1+lс2=1,091+0,109=1,2 м=1200 мм.

 

3.4.11.13 Длина цилиндрической камеры смешения по формуле (2-60) lk

lk=6´d3=6´0,254=1,524 м.

 

3.4.11.14 Выходное сечение диффузора fс определяется по формуле (2-62)

 

 

3.4.11.15 Диаметр выходного сечения dс принимаем Dс=1,400 мм.

 

 

3.4.11.16 Определим длину диффузора lд исходя из угла раствора 8-100 по формуле (2-61)

 

Lд=5´(dс–d3)=5´(1,400-0,254)=7,00 м.

 

3.4.12 Диаметр трубопровода рабочего пара Dр определим исходя из рекомендуемой скорости движения wр=50 м/с принимаем Dр=100 мм.

 

 




























Выбор насосов

 

3.5.1 Насос циркуляционной воды выбираем по производительности, учитывая, что сопротивление водяного тракта установки не превышает 1,5 кг/м3


Qц=G´3600´uк=1950,5´3600´0,0010078=7077 м3/час,

 

где uк=0,0010078 м3/кг – удельный объём рассола при температуре на выходе из последней ступени tк=40 оС.

3.5.2 Насос конденсата греющего пара выбираем также по производительности, предполагая, что весь пар, подаваемый в головной подогреватель, конденсируется

 

Qк=Gг.п.´3600´uк.г.п.=52,45´3600´0,0010437=197,07 м3/час,

 

где uк.г.п.=0,0010437 м3/кг – удельный объём конденсата.

3.5.3 Вакуум-насос конденсатора теплоиспользующих ступеней выбираем по величине необходимого вакуума в ступенях меньше Рабс. =20 кПа.

3.5.4 Вакуум-насос конденсата теплоотводящих ступеней выбираем аналогично, предполагая вакуум в теплоотводящих ступенях более глубоким Рабс.=6 кПа.

3.5.5 Насос обессоленной воды выбирается по производительности и необходимому напору для передачи воды в заводскую сеть Q=750 м3/час.

3.3.6 Полный перечень насосов, используемых в установке представлен в таблице 6.

 

Таблица 6 – Тип и количество устанавливаемых насосов

Назначение

Тип насоса

Производительность Q, м/час Напор Н, м Частота вращения n, 1/мин Мощность N, кВт К.П.Д.

Количество

1 Циркуляционный насос

Д2500-45

2500

45

730

350

0,87

3

2 Насос обессоленной воды

КсВ-1000-95

1000

95

1000

342

0,76

1

3 Насос конденсата греющего пара

КсВ-200-130

200

130

1500

100

0,75

1

4 Насос исходной воды

Д1250-65

1250

65

1450

260

0,86

1

5 Вакуум-насос теплоисполь зующих ступеней

ВВН1-12

360

Рабс.=3,07кПа

1500

12,5

0,75

2

6 Вакуум-насос теплоотводящих ступеней

ВВН1-25

1500

Рабс.=2кПа

1500

20

0,75

1

 




Электротехническая часть

Общая характеристика

 

Проектируемая выпарная установка включает следующее основное электрооборудование:

- электродвигатели приводов насосного оборудования;

- систему освещения.

Необходимо также учитывать возможность подключения различного низковольтного оборудования (электроинструментов, сварочных трансформаторов). Кроме того, всё электрооборудование, кабельные линии и провода оборудуются необходимой защитой и автоматикой.

Линейная схема электрооборудования проектируемой адиабатной выпарной установки представлена на рисунке 11.

Питание проектируемой установки осуществляется от шин напряжением 6 кВ, расположенных на эстакаде производства “Аммиак - 2”, по силовому кабелю, проложенному в земле. Непосредственно на территории установки располагается распределительный шкаф РШ 6 кВ типа К-2-АЭ с вакуумными выключателями типа ВВ/ТЕL, от которого питается высоковольтное оборудование. Двигатели на 380 В, система освещения и внутреннее низковольтное оборудование питается от силового трансформатора через распределительный шкаф РШ 0,4 кВ. Резервного источника питания не предусматривается.

В данном разделе дипломного проекта производится выбор основного электротехнического оборудования, кабелей, проводов, выключателей, автоматов и пр. Здесь же проводится проверка выбранного оборудования и токопроводов.



Выбор электродвигателей

 

4.2.1 Электродвигатели привода насосного оборудования выбираем по номинальной мощности насоса, его К.П.Д. и коэффициента запаса по формуле 2.5 [11] с учётом необходимой частоты вращения

4.2.1.1 Мощность электродвигателя привода циркуляционного насоса Рц

 

 

где N=350 кВт – мощность насоса согласно таблице 6;

h=0,87 – К.П.Д. насоса по таблице 6;

к=1,1 – коэффициент запаса согласно [11];

выбираем электродвигатель АВ-450-750 номинальной мощностью Рном=450 кВт, напряжением U=6 кВ, частота вращения n=750 об/мин, h=0,97, соsj=0,91.

4.2.2 Мощность электродвигателя привода насоса обессоленной воды Ро

 

 

где N=342 кВт – мощность насоса согласно таблице 6;

h=0,76 – К.П.Д. насоса по таблице 6;

к=1,1 – коэффициент запаса согласно [11];

выбираем электродвигатель АВ-500-1000 номинальной мощностью Рном=500 кВт, напряжением U=6 кВ, частота вращения n=1000 об/мин, h=0,94, соsj=0,87.

4.2.3 Мощность электродвигателя насоса конденсата греющего пара Рк.г.п.

 

 

где N=100 кВт – мощность насоса согласно таблице 6;

h=0,75 – К.П.Д. насоса по таблице 6;

к=1,2 – коэффициент запаса согласно [11];

выбираем электродвигатель АО3-400s-4 номинальной мощностью Рном=200 кВт, напряжением U=6 кВ, частота вращения n=1500 об/мин, h=0,93, соsj=0,9.

 

4.2.4 Мощность электродвигателя насоса исходной воды Ри.в.

 

 

где N=260 кВт – мощность насоса согласно таблице 6;

h=0,86 – К.П.Д. насоса по таблице 6;

к=1,1 – коэффициент запаса согласно [11];

выбираем электродвигатель 4АН355М номинальной мощностью Рном=400 кВт, напряжением U=6 кВ, частота вращения n=1500 об/мин, h=0,86, соsj=0,92.

4.2.5 Мощность электродвигателя привода вакуум-насоса ВВН1-12 Рв1

 

 

где N=12,5 кВт – мощность вакуум-насоса согласно таблице 6;

h=0,75 – К.П.Д. насоса по таблице 6;

к=1,3 – коэффициент запаса согласно [11];

выбираем электродвигатель 4А180S-2 номинальной мощностью Рном=22 кВт, напряжением U=380 В, частота вращения n=1500 об/мин, h=0,89, соsj=0,91.

4.2.5 Мощность электродвигателя привода вакуум-насоса ВВН1-25 Рв2 находим аналогично

 

 

где N=20 кВт – мощность вакуум-насоса согласно таблице 6;

h=0,75 – К.П.Д. насоса по таблице 6;

к=1,3 – коэффициент запаса согласно [11];

выбираем электродвигатель 4А200L-4 номинальной мощностью Рном=45 кВт, напряжением U=380 В, частота вращения n=1500 об/мин, h=0,92, соsj=0,9.

4.2.6 Полученные результаты сводим в таблицу 7.

 

Таблица 7 – Номинальные характеристики электродвигателей приводов насосного оборудования

Тип электродвигателя Номинальная мощность Р, кВт Номинальное напряжение U, В Частота вращения n, 1/мин К.П.Д. Cos Количество

АВ-450-750

450

6000

750

0,97

0,91

3

АВ-500-1000

500

6000

1000

0,94

0,87

1

АО3-400S-4

200

6000

1500

0,93

0,9

1

4АН355М

400

6000

1500

0,86

0,92

1

4А180S-2

22

380

1500

0,89

0,91

2

4А200L-4

45

380

1500

0,92

0,9

1

 









Дата: 2019-07-30, просмотров: 495.