Введение
Значительные достижения металлургической науки в последние годы обусловлены использованием современных методов исследования и контроля, позволивших значительно углубить представления о металлургических процессах. Представить сущность процессов, протекающих при металлургическом переделе железных руд, невозможно без использования современных знаний в области физической химии, кристаллографии, физики твердого тела и т.д.
Несмотря на быстрое развитие новых отраслей промышленности, металлургия сохраняет и долго еще будет сохранять свое преимущественное положение в современной индустрии.
Особое место в интенсификации производства отводится реконструкции и механическому перевооружению предприятий, автоматизации и совершенствованию производства на базе современной науки и техники. Целью данной работы является разработка строительства доменной печи с использованием материалов, оборудования на усовершенствованном уровне. Использование внепечного оборудования новейших технологий, применяемого за рубежом.
Применение в качестве добавок жидкого и газообразного топлив явилось одним из главных направлений развития технологии доменного производства в истекшем десятилетии. В последние годы возрос интерес к использованию дешевого и малодефицитного измельченного твердого топлива как заменителя кокса. В СССР и за рубежом выполнен ряд научно-исследовательских и опытно-промышленных работ, значительно приблизивших решение этой проблемы в промышленном масштабе.
Выбор и обоснование сырьевой базы
Железорудные материалы
Балансовые запасы собственно железорудных месторождений Северо-Запада составляют по всем категориям 2504 млн. т и содержат 588 млн. т извлекаемого железа, что обеспечивает выплавку около 7 млн. т чугуна в год в течение 80 лет или более значительную выплавку, но с меньшим сроком обеспеченности [1].
Оленегорское месторождение расположено к югу от Мурманска, близ ст. Оленья Кировской железной дороги. Главными рудными минералами являются магнетит и гематит. В целом ¾ рудного железа заключено в магнетите, а ¼ – в гематите.
Ковдорское месторождение расположено в 118 км от ст. Пинозеро Кировской железной дороги. Приурочено к контакту известняков со щелочной интрузией. На обогатительной фабрике Ковдорского рудника двухстадийная магнитная сепарация руд: сухая и мокрая.
Костамукшское месттрождение находится в 65 км от железнодорожной ст. Юшкозеро. Месторождение приурочено к комплексу нижнеархейских метаморфических сланцев, железистых кварцитов метаморфизованных эффузивов. Это месторождение рассматривается в качестве резерва на отдаленное будущее.
Реальные возможности использования этих ресурсов весьма ограничиваются их невысокой экономической эффективностью как из-за требующейся большой транспортной работы при потреблении руд, так и вследствие расположения в необжитом районе с высокой заработной платой.
Флюсы
Флюсы это добавки вводимые в доменную печь и аглошихту для снижения температуры плавления пустой породы и предания доменному шлаку необходимого состава и физических свойств, обеспечивающих получение чугуна заданной марки и нормальную работу печи.
В доменном цехе и на аглофабриках в основном используют основные флюсы (известняк, доломитизированный известняк). Вывод из доменной шихты сырого известняка снижает удельный расход кокса на тонну чугуна, поэтому применяют офлюсованный агломерат и окатыши, т.е. известняк поступает на аглофабрики для спекания агломерата.
Техническая характеристика известняка поступающего на аглофабрики приведены в таблице 1.
Таблица 1 – Химический состав известняка, %
Материал | SiO2 | Al2O3 | Fe | Fe2O3 | MnO | P2O5 | ZnO | SO3 | П.п.п. | K2O |
Известняк | 2.13 | 0.38 | 1.44 | 2.05 | 0.01 | 0.01 | 0.004 | 0.04 | 41.61 | 0.15 |
Топливо
В качестве топлива, восстановителя и разрыхлителя шихты в доменном производстве применяют кокс – прочное спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании до температуры 950 – 1100 град. без доступа воздуха [2].
В связи с непрерывным ростом производства чугуна и недостатком коксующихся углей особенно остро стоит вопрос о снижении расхода кокса в доменных печах. В данное время применяют в качестве заменителя кокса природный газ. Коэффициент замены кокса природным газом 0,5–1,0.
Расход топливной добавки
В качестве топливной добавки широкое применение получил природный газ. Вдувание природного газа в доменную печь сопровождается увеличением количества продуктов горения, снижением температуры газа в горне, расширением косвенного восстановления и уменьшением расхода кокса. Совместное применение обогащенного дутья кислородом и природного газа дает возможность существенно сократить удельный расход кокса, повысить интенсивность плавки и производительность печи.
Однако во избежании неполадок связанных с переохлаждением горна и образовании сажистого углерода при горении газа у фурм, а также эффективного использования вдуваемого газа и рационального его расхода первостепенное значение имеет распределение газа по фурмам и хорошее смешение его с дутьем.
Состав чугуна
Химический состав чугуна представлен в таблице 2 (приложение А):
Таблица 2 – Химический состав чугуна
Элемент | Si | S | Mn | C | P | Fe |
Содержание, % | 0.50 | 0.02 | 0.30 | 4.52 | 0.07 | 94.57 |
Полученный чугун (из расчета) удовлетворяет ГОСТу 805–80
Показатели тепловой работы
Согласно расчету шихты (приложение А) показатели тепловой работы следующие:
– Полезно используемое тепло q исп = 8549,10 МДж/т;
– коэффициент использования тепла Кт = 88,78%;
– количество тепла выделяющегося на 1 кг суммарного углерода qс = 13,36 МДж/кг;
– коэффициент использования энергии горючего Кс = 51,59%.
Показатели тепловой работы полученные в результате расчета шихты, соответствуют обычно встречающимся в практике и показывают, что величина удельного расхода кокса выбрана верно.
Расход кокса
Доменная печь обеспечивается коксом сухого тушения фракции более 40 мм, допускается загрузка отдельными порциями по специальной программе коксового орешка 15–25 мм. Запрещается увлажнять кокс сухого тушения с целью обеспыливания и охлаждения, поскольку это лишает одного из основных преимуществ – постоянства содержания влаги, а следовательно и стабилизации теплового состояния печи.
Качество кокса должно характеризоваться следующими показателями:
– технический анализ;
– показатели прочности;
– гранулометрический состав.
В данном расчете удельный расход кокса принимаем 430 кг/т чугуна.
Конструкция печи
Профиль
Профилем называют очертания вертикального осевого сечения рабочего пространства печи. Рациональный профиль обеспечивает максимальную производительность и минимальный расход кокса. Трудность в выявлении рационального профиля заключается в качестве сырых материалов и топлива. В настоящее время влияние профиля на результаты плавки уменьшилось, т. к. профиль близок к рациональному, но полностью не исчезло. Изменение размеров профиля близких к рациональным дает увеличение производительности на 2–4%. Результаты расчета профиля печи представлены в «приложении Б», которые выполнены по методу Павлова с элементами оптимизации.
Огнеупорная кладка
Футеровка предназначена для сохранения проектного профиля печи, защиты холодильников и кожуха печи от разрушения. В условиях эксплуатации футеровка испытывает воздействие высоких, переменных во времени и неравномерно распределенных температур, давления жидкого чугуна и шлака, газов, истирающему воздействию шихты. Поэтому ее стойкость зависит от основных свойств огнеупоров [4]:
огнеупорность – свойство сохранять форму и размеры при воздействии высоких температур;
термостойкость – способность выдерживать колебания температуры;
усадка – уменьшение объема;
сопротивление истиранию;
пористость – отношение объема сквозных пор к общему объему образца;
химическая устойчивость – способность огнеупорных материалов противостоять химическому воздействию продуктов плавки;
теплопроводность.
Расчет огнеупорной кладки печи представлен в «приложении Б». На данной печи используется цельноуглеродистая футеровка лещади. Для нее предусмотрена укладка двух вертикальных рядов блоков – снизу графитированных, а сверху углеродистых. По переферии лещадь выкладывается горизонтальными прямоугольными углеродистыми блоками. В центре сверху углеродистых блоков укладывается два ряда высокоогнеупорных муллитовых изделий. Общая толщина лещади составляет 4354 мм.
В неохлаждаемой части шахты укладываем шамотные изделия. Для компенсации теплового расширения кладки зазоры между кладкой и холодильниками заполняем засыпкой на углеродистой основе. Зазор между кожухом и кладкой неохлаждаемой части шахты заполняем пастой на каолиновой основе.
Охлаждение кладки
Охлаждение выполняет следующие функции:
– предохраняет материал деталей, работающих в зонах высоких температур, от разрушения или преждевременного износа;
– способствует образованию на холодильниках гарнисажа, предохраняющего их от истирания и обеспечивающего постоянный профиль и ровный ход печи;
– способствует правильному распределению тепловых потоков внутри кладки, исключающему термические напряжения и изолирующему от высоких температур.
Лещадь доменной печи охлаждается снизу чугунными плитовыми холодильниками с залитыми трубами, по которым проходит вода.
В районах леток для чугуна, фурменной зоны и заплечиков устанавливаются гладкие холодильные плиты с двумя рядами охлаждающих трубок.
Распар и шахта – ребристые холодильники. Для экономического использования технической воды применяется система оборотного водоснабжения.
Металлоконструкции
К металлоконструкциям относятся: кожух печи, копер, колошник, газоотводы и площадки.
Кожух печи, примыкающие к нему холодильники и кладка составляют единую взаимосвязанную систему, определяющую долговечность ее работы. Повреждение одного из элементов этой системы приводит к разрушению двух других.
Доменные печи имеют сварной кожух, из листов толщиной 20–40 мм. Газ от печей отводится четырьмя газоотводами, врезанными в купол. Они размещены симметрично для равномерного отвода газа.
Площадки вокруг печи предназначены для обслуживания холодильников и другого оборудования.
Арматура
К арматуре печи относятся: арматура чугунной летки, шлаковый прибор, фурменный прибор, засыпной аппарат.
Чугунная летка представляет собой прямоугольный канал в нижней части горна, выложенный шамотными изделиями.
Шлаковая летка оснащена водоохлаждаемой арматурой, состоящей из рамы, прикрепленной к стальному фланцу кожуха печи; шлаковой кадушки; амбразуры и шлаковой фурмы.
На данной печи установлены 24 фурмы (приложение Б).
Фурменный прибор состоит из полой, охлаждаемой водой медной фурмы, медного холодильника, чугунной амбразуры с охлаждающей трубкой, сопла, подвижного колена с гляделкой и неподвижного колена.
На печи применяется бесконусное загрузочное устройство.
Загрузочное устройство
Конструктивной особенностью БЗУ является расположение трансмиссионного редуктора в рабочем пространстве печи. Температура редуктора должна составлять 30–40 град. С, температура колошникового газа не должна превышать 350 град. С.
Редуктор охлаждается азотом, система охлаждения эксплуатируется в соответствии со специальной инструкцией.
Передвижная приемная воронка служит для направления материала в соответствующий промежуточный бункер и защиты верхних газоотсекающих клапанов от остатков шихты на конвейере, для чего она снабжена челюстным шихтовым затвором. Воронка имеет гидравлические приводы передвижения.
Промежуточные бункеры предназначены для приема шихтовых материалов и шлюзования их перед загрузкой в печь. Каждый бункер снабжен верхним и нижним газоотсекающим клапаном и шихтовым затвором.
Скорость высыпания для железорудной части шихты должна быть в пределах от 1 до 1,15 т/с, для кокса – 0,2–0,25 т/с.
Лоток служит для распределения материалов по окружности и по радиусу колошника. Он имеет приводы для вращения в двух противоположных направлениях и изменения угла наклона.
Распределительный лоток БЗУ печи может в автоматическом и дистанционном режимах работы изменять угол наклона, относительно вертикали, от 8 до 50 град. в 11 фиксированных угловых положениях.
Время выгрузки для всех видов материалов из промежуточного бункера БЗУ должно быть постоянным. Это обеспечивается выбором соответствующего угла раскрытия шихтового затвора для материалов с различными свойствами.
Воздуходувные средства
Сжатие и нагнетание дутья в печи осуществляется центробежными компрессорами с паротурбинным приводом, работающим на паре высокого давления (до 9 МПа/м2). Воздуходувные машины имеют большую мощность, экономичное и гибкое регулирование числа оборотов и высокую надежность. С переводом печей на работу с высоким давлением газа под колошником и с широким применением кислорода и природного газа, изменились требования к параметрам дутья. С уменьшением расхода воздуха компрессоры должны обеспечивать более высокое давление дутья.
Техническая характеристика воздуходувной машины приведена в таблице 5.
Таблица 5 – Техническая характеристика воздуходувной машины [2]
Наименование показателя | К-5500–41–1 |
Производительность при режиме, м3/мин: Максимальная Минимальная Давление, кПа/м2 (кг/см2): Нормальное Максимальное Максимальное число оборотов | 5000 3000 430 (4,3) 540 (5,4) 3600 |
Воздухонагреватель
Для обеспечения нагрева дутья до температуры 1250 град. С принимаем высокотемпературный воздухонагреватель регенеративного типа с камерой горения в куполе. Для нашей печи полезным объемом 2824 м3 принимаем четыре таких воздухонагревателя.
Огнеупорная насадка воздухонагревателя нагревается теплом, полученным от сжигания колошникового газа, после чего аккумулированное насадкой тепло передается дутью.
Кожух сваривают из листовой стали толщиной 20 мм в основной части, 24–26 в купольной и 24 мм в днище. Футеровку купола выполняют толщиной 450 мм. Воздухонагреватель имеет теплоизоляционную защиту из трепельного и легковесного кирпичей по одному ряду каждого. Высокотемпературная зона со встроенной камерой горения выкладывается динасовыми огнеупорами, остальные зоны – шамотными.
Конструктивная и тепловая характеристики воздухонагревателя приведены в таблице 6.
Таблица 6 – Конструктивная и тепловая характеристики воздухонагревателя [2]
Показатель | Объем печи 2824 м3 |
Высота воздухонагревателя полная, м Диаметр воздухонагревателя, м Радиус купола, м Камера насадки: высота, м полезное сечение, м2 Камера горения: высота, м сечение, м2 Температура, град. С: купола дутья уходящих газов | 44,2 9,19 4,68 43,3 42,0 33,7 6,06 1300–1550 1250 400 |
Подача и загрузка шихты
Агломерат и кокс в приемные бункера шихтоподачи подаются системой конвейеров непосредственно из агломерационного и коксохимического производств комбината. Добавки также подаются конвейерами со специального приемного устройства. Коксовая мелочь подается в специально выделенный бункер, оборудованный грохотом с диаметром отверстий сит 15 мм.
Нормальный запас агломерата, окатышей, руды и кокса в приемных бункерах определяется объемом бункеров. Полнота заполнения бункеров материалами должна быть не менее чем на 2/3 их емкости. Полное опорожнение бункеров запрещается.
Кокс, агломерат, окатыши выдаются из бункеров непосредственно на доменный конвейер по схеме: приемный бункер, 3 грохота типа ГСТ-62, весовой бункер с регулируемым затвором, сборная воронка, доменный конвейер для подачи шихты на колошник. Добавки выдаются из бункеров питателями в весовые бункера и далее на доменный конвейер без отсева мелочи. При этом регулируемые затворы весовых бункеров устанавливаются в положение, исключающее переполнение конвейера доменного.
Бесперебойная ритмичная загрузка материалов в доменную печь в заданной последовательности и установленной массы с обеспечением постоянства уровня засыпи на колошнике являются одним из основных условий ровного и устойчивого хода печи.
Очистка доменного газа
Количество пыли в газе изменяется в зависимости от степени подготовки сырья к плавке, прочности кокса и ровности хода печи. Содержание пыли в газа резко сокращается при работе печей на режиме повышенного давления газа на колошнике. По количеству пыли, остающейся в газе после его очистки, последняя классифицируется на грубую, полутонкую и тонкую. По способу очистки газа газоочистительные средства разделяют на сухие и мокрые. Грубая очистка производится сухим способом. Полутонкую очистку газа осуществляют мокрым способом, т.е. обильным увлажнением газа, после которого смоченные частицы пыли удаляются вместе с водой из газовой среды виде шлама.
Тонкая очистка является конечной стадией очистки газа и требует обязательной предварительной подготовки для получения надлежащего эффекта. Тонкая очистка осуществляется фильтрацией газа через тканевые фильтры или наэлектризованием частиц пыли и притягиванием их проводниками электрического тока в электростатических аппаратах или устройствах, работающих по принципу тесного перемешивания газа с водой.
Для очистки доменного газа в нашем случае принята следующая схема газоочистки в соответствии с рисунком 1 (обозначения в тексте).
Пылеуловитель 1 с центробежным подводом газа. Основные параметры: скорость газа на входе 12 нм/с; скорость подъема газа 1,1 нм/с; степень очистки газа 50%; время пребывания газа 13 с. Скруббер 2 – полый форсуночный скруббер представляет собой шахту (колонну) круглого сечения, в верхней части которой размещено несколько ярусов орошения с большим числом форсунок, распыляющих воду и создающих равномерный поток мелких капель воды, движущихся вниз. Нижняя часть скруббера заканчивается конусом и заполнена водой, уровень которой поддерживается постоянным. Запыленный газ подведенный снизу, распределяется по всему сечению и движется вверх. В результате происходит контакт частиц пыли с каплями воды, тем самым, осуществляется очистка газа от пыли. В скрубберах достаточно эффективно улавливаются частицы пыли более 10 мкм (0,01 мм). Частицы размером меньше 5 мкм практически не улавливаются. Трубы Вентури 3 – Скрубберы Вентури являются наиболее распространенным и эффективным типом мокрого пылеуловителя, который обеспечивает очистку газов от частиц пыли практически любого дисперсного состава.
Конструктивно скруббер Вентури представляет собой сочетание орошаемой трубы Вентури и каплеуловителя. Труба Вентури состоит из сужения на входе-конфузора и плавного расширения на выходе-диффузора. Пережим сечения трубы Вентури получил название горловины. Принцип действия трубы Вентури основан на интенсивном раздроблении частиц орошающей жидкости газовым потоком, движущимся с высокой скоростью (порядка 50 – 150 м/с. Осаждению частиц пыли на каплях орошающей жидкости способствуют турбулентность газового потока и высокие относительные между частицами пыли и каплями. Труба Вентури эффективно работает на пылях со средним размеров частиц 1–2 мкм в широком диапозоне начальной концентрации (0,05–100 г./м3).
Каплеуловитель 4, дроссельная группа 5, каплеуловитель 6, нагревательный элемент 7, ГУБТ 8.
Скорость схода шихты
Контроль и регулирование схода шихты являются важнейшими операциями управления доменным процессом, так как определяют эффективность всех основных процессов: восстановительного, газодинамического и теплового.
Наиболее распространены системы автоматического регулирования скорости схода шихты с импульсами «сверху», вырабатываемыми механическими или радиометрическими уровнемерами типа УРМС-2 и УРМС-2М. Источником излучения является изотоп Со активностью 0,32–0,45 Ки. Два источника гамма-излучения устанавливают в амбразурах верхнего ряда защитных сегментных плит колошника в диаметрально противоположных точках. Излучение воспринимается детекторами, размещенными в водоохлаждаемых штангах, опускаемых и поднимаемых перед герметически закрываемым отверстием в кожухе колошника примерно по оси каждого газохода. Опускание и подъем осуществляют тросовыми лебедками с электромеханическим приводом. Электрические сигналы детекторов излучения по кабель – тросу выводятся из печи наружу к лебедкам и передаются в импульсную цепь в блок управления, где сравниваются с опорным потенциалом (Vо = 0,5 Vmax). Образовавшаяся разность потенциалов Vр = Vc – Vo передаются на релейный усилитель блока управления, который коммутирует обмотки двигателя лебедки так, что при Vc<Vo происходит подъем, а при Vc>Vo опускание штанги с детектором излучения.
Загазованность атмосферы
В доменном производстве могут выделяться следующие вредные для здоровья газы и вещества: окись углерода СО, сернистый газ SO2, углеводороды СН и цианистые соединения.
В зависимости от условий плавки и качества выплавляемого чугуна доменный газ может иметь следующий состав: 11 – 17% СO2; 22 -28% CO; 1,5 – 7,5% Н2; 0,1 – 0,3% CH4 и 50 – 57% N2.
Различные составляющие доменного газа (СО, N2, CO2, H2) по-разному действуют на человеческий организм, вызывая отравление и удушье. Окись углерода легко адсорбируется пылью, смолой, проникает через малейшие трещины.
Окись углерода – основная газовая вредность в доменном цехе. Попадая в легкие, окись углерода вступает в химическое соединение с гемоглобином и образованием карбоксигемоглобина, что препятствует переносу кислорода кровью из легких к тканям организма. При отравлении окисью углерода больше всего страдает центральная нервная
система, а также органы дыхания.
Взрывоопасность
Газы, применяемые и образующиеся в доменном производстве, легко воспламеняемы, что может вызвать их возгорание и взрывы.
Взрывы происходят при смешивании газа с воздухом в определенных соотношениях. Во всех случаях они являются следствием неправильных действий персонала или неисправности оборудования. Взрывы могут происходить; в доменной печи, межконусном пространстве, трубопроводах, воздухонагревателях, пылеуловителях, воздуходувных машинах, скрубберах, горновом желобе при сушке, теплушках, отапливаемых газом помещениях, где может накапливаться газ.
Кроме газовых взрывов, в доменных цехах возможны взрывы, вызванные жидкими продуктами плавки (чугуном и шлаком). Эти взрывы происходят при взаимодействии влаги с расплавленным металлом и шлаком. Они сопровождаются сильным звуком, разбрасыванием большого количества брызг и искр, что может привести к тяжелым травмам.
Такие взрывы являются следствием неправильных действий горновых, разливщиков, ковшевых и др.
Запыленность
В доменном цехе пыль образуется в следующих местах: на рудном дворе и бункерной эстакаде при разгрузке шихтовых материалов, в подбункерном помещении при наборе и взвешивании шихты, в скиповой яме, на колошнике при загрузке печи, во время выпуска пыли из пылеуловителей, при выпусках чугуна и т.д.
В зависимости от качества шихтовых материалов выделяемая в атмосферу пыль может иметь различный гранулометрический химический состав.
Пыль подбункерного помещения, рудного двора и бункерной эстакады образуется из минеральной и горючей части шихты. Она характеризуется высокой дисперсностью с преобладанием фракций 2–4 мкм и содержит большое количество углерода, окислов кремния и железа.
Средний гранулометрический состав пыли в зоне дыхания машиниста вагон-весов во время набора агломерата приведен в таблице 8.
Таблица 8 – Фракционный состав колошниковой пыли
Размер частиц, мкм | +500 | 500…20 0 | 200…90 | 90…40 | 40…1 | -10 |
Содержание, % | 1,2 | 21,0 | 40,5 | 30,2 | 3,9 | 3,2 |
Шум и вибрация
Источниками постоянных шумовых нагрузок являются вибропитатели, пластинчатые конвейеры, коксовые грохоты, вентиляционные
установки, мотор-генераторы машинных залов, утечки воздуха, различные звуковые сигналы и т.д.
Кроме шумовых нагрузок, на организм человека вредно действует
вибрация. Вибрации в доменном цехе создаются при движении поездов
по бункерной эстакаде, работе виброгрохотов и вибропитателей, при
движении скипов по наклонному мосту и работе механизмов машинного зала. Сильные вибрации создают вентиляторы горелок воздухонагревателей.
Снижение шума и вибраций
Допустимые уровни шума зависят от частотного состава звука. При низкочастотных шумах допускается громкость 90 – 100 дБ, при среднечастотных 85 – 90 дБ и при высокочастотных 75–85 дБ.
Чувствительность к вибрациям зависит от их физических характеристик. Сотрясения начинают ощущаться, когда ускорение вибраций достигает 1% от нормального ускорения силы тяжести (9,81 см/с2), и становятся неприятными, когда ускорения достигают 4 – 5% ускорения силы тяжести. Предельно допустимые величины вибраций (частота, амплитуда колебаний, скорость и ускорение колебательного движения) определяются по специальным таблицам, согласно разработанным нормам.
В доменных цехах борьба с шумами и вибрацией состоит в обеспечении надлежащей плотности воздухопроводов, газопроводов, арматуры, кожухов печи и воздухонагревателей. Кроме того, необходимо следить за закреплением всех конструкций и правильной балансировкой механизмов и вентиляторов.
Особую роль в ликвидации воздействий шума и вибраций играют механизация и автоматизация производственных процессов – автоматическая перекидка клапанов воздухонагревателей, дистанционное управление краном литейного двора и др.
Снижение шума может быть достигнуто устройством глушителей, например отводом воздуха из клапана «снорт» в дымовую трубу, устройством выхлопных клапанов со встроенным приводом в межконусном пространстве.
Применение амортизаторов и мягких уплотнений на трассах вентиляционных систем, диффузоров из брезента, окожушивание, применение амортизирующих подвесок на вибродвигателях, замена канатных зондов цепными снижают шум и вибрацию.
Примером технического решения вопроса уменьшения шумов на дросселях высокого давления может служить подача воды в поток газа при проходе его через дроссельную группу. Конструкция дроссельной группы при этом не изменилась.
Кроме технических мер, для уменьшения шума и вибраций необходимо применять меры организационно-санитарные: уменьшение количества звуковых сигналов, применение звукопоглощающих и звукоизолирующих материалов.
Охрана окружающей среды
Охрана и очистка водоемов
На предприятиях черной металлургии водопотребление достигает
больших объемов, поэтому рациональное использование воды является
очень важной проблемой. Сточные воды металлургического предприятия делятся на производственные, использованные в технологическом процессе и для уборки помещений и территории предприятия, бытовые – от пищеблоков и санитарно-бытовых помещений и атмосферные.
Производственные сточные воды подразделяются на загрязненные и условно чистые сточные воды. Состав загрязненных сточных вод
определяется видом производства, назначением используемой воды и
типом перерабатываемых сырых материалов. Основными загрязняющими примесями сточных вод доменного цеха являются различные взвешенные вещества минерального происхождения, растворимые кислоты, щелочи и соли. Условно чистые сточные воды образуются при использовании воды для охлаждения металлургических агрегатов, при этом вода лишь нагревается, практически не загрязняясь.
Сточные воды, спускаемые в водоемы, должны быть подвергнуты очистке до такой степени, чтобы не вызывать каких-либо изменений в состоянии водоема. Необходимая степень очистки сточных вод, спускаемых в водоем, определяется содержанием взвешенных частиц, усвоением сточными водами растворенного кислорода, окраской, запахом, солевым составом и температурой воды, а также ПДК токсичных примесей и других вредностей.
Механические методы используют при первичной очистке сточных вод для удаления минеральных и органических примесей, находящихся в нерастворенном или коллоидном состоянии. Они включают процеживание, отстаивание, центрифугирование, фильтрование сточных вод.
При химической очистке из сточных вод загрязнения выделяются, в результате реакций между вводимыми в воду реагентами и загрязнителями с образованием соединении либо выпадающих в осадок, либо газообразных веществ. К числу химических методов относится нейтрализация, коагулирование, химическое окисление, озонирование.
Физико-химические методы используют для глубокой или дополнительной очистке сточных вод. Они включают сорбцию, экстракцию, флотацию, электролиз, кристаллизацию и др.
Сточные воды металлургических производств, помимо очистки, подвергают охлаждению и перед спуском в водоемы и при использовании воды для оборотного водоснабжения. Для охлаждения воды применяют следующие сооружения: прудоохладители, брызгательные бассейны, башенные и вентиляторные градирни. Размещение охладителей на площадках предприятий должно обеспечить беспрепятственное поступление к ним воздуха, минимальную протяженность трубопроводов и каналов, а также исключение обмерзания зданий и сооружений.
Доменное производство является источником загрязнения атмосферного воздуха. Загрязненный воздух затрудняет дыхание и является причиной острых респираторных заболеваний.
Смета капитальных затрат
Затраты на строительство одной доменной печи V = 2824 мз, следующие:
Строительные работы – 1 316 101,5 тыс. руб.
Монтажные работы – 565 204,5 тыс. руб.
Оборудование – 982 200 тыс. руб.
Прочие затраты – 188 007 тыс. руб.
Итого: 3 051 513 тыс. руб.
Стоимость разливочных машин (2 шт.) – 96 666 тыс. руб.
Всего: 3 148 179 тыс. руб.
Введение
Значительные достижения металлургической науки в последние годы обусловлены использованием современных методов исследования и контроля, позволивших значительно углубить представления о металлургических процессах. Представить сущность процессов, протекающих при металлургическом переделе железных руд, невозможно без использования современных знаний в области физической химии, кристаллографии, физики твердого тела и т.д.
Несмотря на быстрое развитие новых отраслей промышленности, металлургия сохраняет и долго еще будет сохранять свое преимущественное положение в современной индустрии.
Особое место в интенсификации производства отводится реконструкции и механическому перевооружению предприятий, автоматизации и совершенствованию производства на базе современной науки и техники. Целью данной работы является разработка строительства доменной печи с использованием материалов, оборудования на усовершенствованном уровне. Использование внепечного оборудования новейших технологий, применяемого за рубежом.
Применение в качестве добавок жидкого и газообразного топлив явилось одним из главных направлений развития технологии доменного производства в истекшем десятилетии. В последние годы возрос интерес к использованию дешевого и малодефицитного измельченного твердого топлива как заменителя кокса. В СССР и за рубежом выполнен ряд научно-исследовательских и опытно-промышленных работ, значительно приблизивших решение этой проблемы в промышленном масштабе.
Выбор и обоснование сырьевой базы
Железорудные материалы
Балансовые запасы собственно железорудных месторождений Северо-Запада составляют по всем категориям 2504 млн. т и содержат 588 млн. т извлекаемого железа, что обеспечивает выплавку около 7 млн. т чугуна в год в течение 80 лет или более значительную выплавку, но с меньшим сроком обеспеченности [1].
Оленегорское месторождение расположено к югу от Мурманска, близ ст. Оленья Кировской железной дороги. Главными рудными минералами являются магнетит и гематит. В целом ¾ рудного железа заключено в магнетите, а ¼ – в гематите.
Ковдорское месторождение расположено в 118 км от ст. Пинозеро Кировской железной дороги. Приурочено к контакту известняков со щелочной интрузией. На обогатительной фабрике Ковдорского рудника двухстадийная магнитная сепарация руд: сухая и мокрая.
Костамукшское месттрождение находится в 65 км от железнодорожной ст. Юшкозеро. Месторождение приурочено к комплексу нижнеархейских метаморфических сланцев, железистых кварцитов метаморфизованных эффузивов. Это месторождение рассматривается в качестве резерва на отдаленное будущее.
Реальные возможности использования этих ресурсов весьма ограничиваются их невысокой экономической эффективностью как из-за требующейся большой транспортной работы при потреблении руд, так и вследствие расположения в необжитом районе с высокой заработной платой.
Флюсы
Флюсы это добавки вводимые в доменную печь и аглошихту для снижения температуры плавления пустой породы и предания доменному шлаку необходимого состава и физических свойств, обеспечивающих получение чугуна заданной марки и нормальную работу печи.
В доменном цехе и на аглофабриках в основном используют основные флюсы (известняк, доломитизированный известняк). Вывод из доменной шихты сырого известняка снижает удельный расход кокса на тонну чугуна, поэтому применяют офлюсованный агломерат и окатыши, т.е. известняк поступает на аглофабрики для спекания агломерата.
Техническая характеристика известняка поступающего на аглофабрики приведены в таблице 1.
Таблица 1 – Химический состав известняка, %
Материал | SiO2 | Al2O3 | Fe | Fe2O3 | MnO | P2O5 | ZnO | SO3 | П.п.п. | K2O |
Известняк | 2.13 | 0.38 | 1.44 | 2.05 | 0.01 | 0.01 | 0.004 | 0.04 | 41.61 | 0.15 |
Топливо
В качестве топлива, восстановителя и разрыхлителя шихты в доменном производстве применяют кокс – прочное спекшееся вещество, остающееся после удаления из каменного угля летучих веществ при нагревании до температуры 950 – 1100 град. без доступа воздуха [2].
В связи с непрерывным ростом производства чугуна и недостатком коксующихся углей особенно остро стоит вопрос о снижении расхода кокса в доменных печах. В данное время применяют в качестве заменителя кокса природный газ. Коэффициент замены кокса природным газом 0,5–1,0.
Дата: 2019-07-30, просмотров: 213.