ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
К ДИПЛОМНОЙ РАБОТЕ
"Повышение безопасности движения на пр. Ленинградский: снижение аварийности"
Дипломник: Локтева Анастасия Николаевна
г. Архангельск 2004 г.
Содержание
1. Характеристика г. Архангельска
1.1 Общая историческая справка г. Архангельска
1.2 Природно-климатические условия
1.3 Экономическая, административная и территориальная характеристика Архангельска
2. Транспортная сеть города Архангельска
2.1 Общая схема дорожной сети
2.2 Общая характеристика проспекта Ленинградский
3. Анализ по составу и интенсивности движения по пр. ленинградский (за период 2004-2005 г).
3.1 Характеристика состава движения транспортных средств по данным учета интенсивности на перекрестках
3.1.1 Результаты учета интенсивности движения
3.1.2 Общие выводы по составу транспортных потоков на контрольных участках проспекта Ленинградский за 2005 г.
3.2 Анализ результатов учета интенсивности
3.2.1 Основные принципы методики определения пропускной способности проезжей части
3.2.2 Ограничивающие условия, влияющие на пропускную способность пр. Ленинградский
3.2.3 Пример расчета пропускной способности автодороги непрерывного движения с тремя полосами движения
4. Анализ имеющихся статистических данных по условиям дорожного движения на пр. Ленинградский
4.1 Характеристика пр. Ленинградский
4.2.1Общий уровень аварийности
4.2.2 Интенсивность движения и состав транспортного потока
4.2.3 Распределение дорожно-транспортных происшествий
4.2.4 Влияние дорожной инфраструктуры на уровень аварийности
4.2.5 Влияние неблагоприятных внешних факторов на уровень ДТП
Заключение
Природно-климатические условия
Климат города субарктический, морской с продолжительной зимой и коротким прохладным летом. Он формируется под воздействием северных морей и переносов воздушных масс с Атлантики в условиях малого количества солнечной радиации. Архангельск находится в умеренном климатическом поясе, где отмечается наибольшая повторяемость воздушных масс умеренных широт.
Среднесуточная температура воздуха наиболее жаркого месяца (июля) составляет 15,6ºС. Среднесуточная температура наиболее холодного месяца (января) равна - 12,9ºС. Температура наружного воздуха по месяцам представлена в таблице 1.1
Таблица 1.1 Температура наружного воздуха (средняя по месяцам).
Месяц | I | II | II | V | V | I | II | III | IX | X | XI | XII |
Темпера-тура | -12,9 | -12,5 | 8 | -0,9 | 6 | 12,4 | 5,6 | 13,6 | 7,9 | 1,5 | -1,4 | -9,5 |
Продолжительность периода со среднесуточной температурой:
меньше 0°С составляет 177 суток;
меньше 8°С составляет 253 суток;
меньше 10°С составляет 273 суток;
Абсолютная минимальная температура равна - 45ºС.
Абсолютная максимальная температура равна 34ºС.
Количество осадков:
за год - 590 мм;
за теплый период (апрель-октябрь) - 402 мм;
за холодный период (ноябрь-март) - 188 мм.
Преобладающее направления ветра за декабрь-февраль - ЮВ, за июнь-август - СЗ.
Средняя месячная относительная влажность воздуха наиболее холодного месяца - 86%, наиболее теплого месяца - 72%.
Транспортная сеть города Архангельска
Общая схема дорожной сети
Улично-дорожные сети всех крупных городов были традиционно ориентированы на удовлетворение основных транспортных потребностей населения с помощью общественного транспорта. Развитие рыночных отношений означает неизбежную автомобилизацию общества и прирост парка легковых транспортных средств, что подтверждают данные статистики.
Показатель насыщенности легковым транспортом в наших городах, быстро приближается к развитым автомобилизированным странам.
В настоящее время этот показатель для Архангельска составляет порядка 160 легковых автомобилей на 1000 человек.
Поэтому, перед городами, в том числе, перед Архангельском, встают задачи:
Адаптировать улично-дорожную сеть к быстро растущим объемам движения транспорта;
Ликвидировать дефицит таких объектов транспортной инфраструктуры как: стоянки у объектов массового посещения и жилых массивов, гаражи, станции техобслуживания, заправки и мойки автомобилей, предприятия по утилизации старых автомобилей, покрышек, масел, аккумуляторов и т.п.;
Использовать практический опыт развитых стран в области планирования, проектирования, строительства и эксплуатации объектов, улучшающих как качественный уровень транспортных инфраструктур, так и среду проживания городского населения;
Всеми средствами сохранить ведущую роль общественного транспорта при улучшении качества его услуг в новых экономических условиях, как средства повышения производительности улично-дорожной сети и снижения перегруженности в городах, а следовательно снижения уровня ДТП и вредного воздействия на окружающую среду.
Классификация дорог в составе улично-дорожной сети может иметь четыре разновидности, соответствуя:
Административной принадлежности
Функциональному назначению
Техническим характеристикам
Смешанным функционально-техническим характеристикам.
Улично-дорожная сеть любого города должна обслуживать все виды транспортного движения: грузовое движение, движение общественного транспорта и легкового транспорта, а также, велосипедное и пешеходное движение (так называемое, "легкое движение"). Различные виды транспортного движения, в свою очередь, требуют специализированных инфраструктур в рамках улично-дорожной сети.
Например:
Инфраструктура для обслуживания грузового движения требует: дорог усиленной конструкции с соответствующими геометрическими характеристиками (большие радиусы кривых, учитывающие длину
автопоездов); грузовых терминалов.
Инфраструктура для движения общественного транспорта требует: депо, разворотных площадок на конечных остановках, пассажирских терминалов для пересадки одного вида общественного транспорта на другой, устройство заездных карманов на остановках, павильонов или станций, рельсовых путей, контактных сетей, подстанций и т.п. (в зависимости от вида общественного транспорта).
Инфраструктура для движения легкового транспорта требует: дорог достаточной пропускной способности, обустройства временных стоянок у объектов массового посещения (супермаркеты, вокзалы и т.п.), объектов сервиса.
Инфраструктура для движения легкого транспорта требует: организации сети дорожек для безопасного велосипедного, роликового, пешеходного движения; обустроенных мест для стоянки велосипедов у объектов массового посещения (университеты, школы, библиотеки, предприятия, магазины).
Каждая из перечисленных инфраструктур, входит в состав улично-дорожной сети города, имеет определенное значение, свой характер движения и, требует соответствующего содержания.
Практика западных стран показывает, что наиболее рациональной классификацией связей в масштабе улично-дорожной сети является классификация по функциональному назначению с установкой соответствующего положения (иерархии) среди всех связей в составе улично-дорожной сети данного города. Такая иерархия устанавливается на уровне подготовки генерального плана города, совместными усилиями организаций, отвечающих за функционирование городской транспортной инфраструктуры.
Как известно, стратегии и приоритеты развития разных городов различны и обусловлены географическим положением, историей, административным статусом, экономическим положением.
Например:
Транзитный город, расположенный на оживленном торговом коридоре. Приоритет принадлежит инфраструктуре для транзитного грузового движения. Цель - скорейший вывод грузового движения за пределы города.
Портовый город. Приоритет принадлежит инфраструктуре для быстрого перемещения грузов с одного вида транспорта на другой (интермодальные терминалы). Цель - скорейший вывод грузового движения за пределы города.
Административный город. Приоритет принадлежит инфраструктуре для обслуживания легкового движения. Цель - максимальная скорость сообщения между различными точками на улично-дорожной сети, обеспеченность площадями для стоянок у административных зданий, гостиниц, учреждений культуры.
Туристический город. Приоритет принадлежит инфраструктурам для обслуживания общественного транспорта и легкового движения. Цель - легкость передвижения по улично-дорожной сети для иногородних водителей, обеспеченность информацией, объектами сервиса, площадями для стоянки у объектов туристического интереса, гостиниц, магазинов, кафе.
Курортный город. Приоритет принадлежит инфраструктуре для движения легкого транспорта. Скоростное движение выводится за пределы курортных зон. Цель - удовольствие от передвижения по городу: привлекательность городских видов, тишина, минимальное количество выбросов. Широкое распространение методов ландшафтного обустройства транспортных связей, спокойный скоростной режим.
Промышленный город. Приоритет принадлежит инфраструктурам для общественного транспорта и грузового движения. Цель - производительное пассажирское сообщение между жилыми и промышленными районами для перемещения большого количества людей в утренние и вечерние пиковые периоды, завоз сырья и вывоз готовой продукции.
ИТОГО
Графическая интерпретация данных таблицы представлена на Диаграмме 3.1
Диаграмма 3.1 Состав транспортного потока в пиковый период на контрольном участке №1
Проспект Ленинградский - улица Галушина (контрольный участок №2).
Таблица 3.2 Интенсивность движения ТС на пр. Ленинградский - ул. Галушина в пиковый период (9: 00-10: 00)
Транспортные средства | Интенсивность движения, авт/час | Прирост,% | ||||
2004 г | 2005 г | |||||
Кол-во ТС | Процент от общего потока,% | Кол-во ТС | Процент от общего потока,% | |||
Легковые автомобили | SOV (только водитель) | 388 | 26 | 464 | 30 | 19 |
HOV (водитель с пассажирами) | 456 | 31 | 352 | 23 | -23 | |
Автобусы | Длинные | 8 | 0,5 | 8 | 0,5 | 0 |
Частные | 408 | 28 | 420 | 27 | 3 | |
Служебные | 4 | 0,5 | 8 | 0,5 | 100 | |
Грузовые автомобили | 184 | 13 | 256 | 17 | 39 | |
Прочие ТС | 16 | 1 | 28 | 2 | 75 | |
ИТОГО | 1464 | 100 | 1532 | 100 | 5 |
Графическая интерпретация данных таблицы представлена на Диаграмме 3.2
Диаграмма 3.2 Состав транспортного потока в пиковый период на контрольном участке №2
Проспект Ленинградский - улица Ленина (контрольный участок №3).
Таблица 3.3 Интенсивность движения ТС на пр. Ленинградский - ул. Ленина (3-й лесозавод) в пиковый период (9: 00-10: 00)
Транспортные средства | Интенсивность движения, авт/час | Прирост,% | ||||
2004 г | 2005 г | |||||
Кол-во ТС | Процент от общего потока,% | Кол-во ТС | Процент от общего потока,% | |||
Легковые автомобили | SOV (только водитель) | 286 | 28 | 420 | 33 | 47 |
HOV (водитель с пассажирами) | 208 | 20 | 244 | 20 | 17 | |
Автобусы | Длинные | 4 | 1 | - | - | - |
Частные | 228 | 22 | 308 | 24 | 35 | |
Служебные | 8 | 1 | 4 | 1 | -50 | |
Грузовые автомобили | 268 | 26 | 256 | 20 | -4 | |
Прочие ТС | 20 | 2 | 28 | 2 | 40 | |
ИТОГО | 1022 | 100 | 1260 | 100 | 23 |
Графическая интерпретация данных таблицы представлена на Диаграмме 3.3
Диаграмма 3.3 Состав транспортного потока в пиковый период на контрольном участке №3
Проспект Ленинградский - улица Никитова (контрольный участок №4).
Таблица 3.4 Интенсивность движения ТС на пр. Ленинградский - ул. Никитова в пиковый период (9: 00-10: 00)
Транспортные средства | Интенсивность движения, авт/час | Прирост % | ||||
2004 г | 2005 г | |||||
Кол-во ТС | Процент от общего потока, % | Кол-во ТС | Процент от общего потока, % | |||
Легковые автомобили | SOV (только водитель) | 212 | 32 | 424 | 34 | 100 |
HOV (водитель с пассажирами) | 100 | 15 | 192 | 15,5 | 92 | |
Автобусы | Длинные | - | - | 8 | 1 | - |
Частные | 276 | 41 | 364 | 29 | 32 | |
Служебные | 4 | 1 | 4 | 0,5 | 0 | |
Грузовые автомобили | 60 | 9 | 180 | 15 | 200 | |
Прочие ТС | 12 | 2 | 64 | 5 | 433 | |
ИТОГО | 664 | 100 | 1236 | 100 | 86 |
Графическая интерпретация данных таблицы представлена на Диаграмме 3.4
Диаграмма 3.4 Состав транспортного потока в пиковый период на контрольном участке №4
Проспект Ленинградский - Новый поселок (контрольный участок №5).
Таблица 3.5 Интенсивность движения ТС на пр. Ленинградский - Новый поселок в пиковый период (9: 00-10: 00)
Транспортные средства | Интенсивность движения, авт/час | Прирост,% | ||||
2004 г | 2005 г | |||||
Кол-во ТС | Процент от общего потока,% | Кол-во ТС | Процент от общего потока,% | |||
Легковые автомобили | SOV (только водитель) | 84 | 18 | 72 | 15 | -14 |
HOV (водитель с пассажирами) | 104 | 22 | 96 | 20 | -8 | |
Автобусы | Длинные | - | - | - | - | - |
Частные | 180 | 38 | 180 | 39 | 0 | |
Служебные | 8 | 2 | 8 | 2 | 0 | |
Грузовые автомобили | 92 | 20 | 104 | 22 | 13 | |
Прочие ТС | - | - | 8 | 2 | - | |
ИТОГО | 468 | 100 | 468 | 100 | 0 |
Графическая интерпретация данных таблицы представлена на Диаграмме 3.5
Диаграмма 3.5 Состав транспортного потока в пиковый период на контрольном участке №5
Результаты учета интенсивности движения показывают:
Данные по группе SOV говорят об эффективности использования парка легкового транспорта.
Данные по группе HOV говорят о существовании потребности в пассажирских перевозках.
Общая интенсивность движения в целом не изменилась, изменился лишь состав транспортных средств.
Прирост интенсивности частных автобусов в среднем 20%, у легковых автомобилей произошло увеличение, так называемой категории SOV, на 43%, интенсивность категории HOV осталась практически на том же уровне, у грузового транспорта увеличение на 83%.
Отсутствие данных о трамвайном движении за 2005 год, вызвано снятием в июне 2004г. трамвайного движения по Ленинградскому проспекту.
Примечание: данные за 2005 г. имеются только за весенний период (март), а за 2004 только за осенний (ноябрь), поэтому сравнение имеющихся сведений может быть не достаточно достоверно, но от этого общая картина по составу и росту интенсивности транспортных средств не меняется.
Пример расчета пропускной способности автодороги непрерывного движения с тремя полосами движения
В связи тем, что в июне 2004 года трамвайное движение на пр. Ленинградский было убрано, вместо трамвайных путей можно при реконструкции, предусмотреть дополнительная полоса для движения транспортных средств.
Значение дистанция безопасности, между остановившимися приведенными транспортными средствами принята равной:
для правой полосы lo= 8 м.
для средней полосы lo= 8 м.
для левой полосы lo= 8 м.
По соответствующим уравнениям определим значение пропускной способности полос движения (при скорости движения 10 км/ч):
для правой полосы она будет равна:
м; авт/час
для средней полосы - 609 приведенных ТС/час,
для левой полосы - 609 приведенных ТС/час.
Пропускная способность проезжей части Рпр. ч. будет равна:
Рпр. ч=609 + 609 + 609 = 1827 приведенных ТС/час.
Таблица 3.7. приводит данные расчета пропускной способности контрольного участка №4 в приведенных транспортных единицах.
Данные таблицы 3.7. показывает зависимость пропускной способности в обоих направлениях от поперечного сечения проезжей части дороги при скорости движения транспортного потока.
Таблица 3.7. Пропускная способность контрольного участка №4 различных скоростях движения транспортного потока.
Скорость транспортного потока, км/час | Динамический габарит ТС, м | Пропускная способность, прив. авт/час |
10 | 16,42 | 1827 |
15 | 18,98 | 2371 |
20 | 22,18 | 2705 |
30 | 30,82 | 2920 |
40 | 43,62 | 2751 |
50 | 62,66 | 2394 |
60 | 90,9 | 1980 |
Примечание: Динамический габарит ТС - длина ТС + дистанция безопасности, минимально необходимая для безопасной остановки этого ТС, движущегося с заданной скоростью.
Таблица 3.8. приводит данные замеров фактической интенсивности движения на контрольном участке №4 (проспект Ленинградский - улица Никитова) в обоих направлениях и выражение этой интенсивности через приведенные легковые ТС.
Таблица 3.8 Интенсивность движения ТС на контрольном участке №4 пиковый период.
Транспортные средства | Интенсивность движения, авт/час | Коэффициент приведения | Приведенная интенсивность движения, авт/час |
Легковые автомобили | 616 | 1 | 616 |
Автобусы | 376 | 2,5 | 940 |
Грузовые автомобили | 180 | 2 | 360 |
Прочие | 64 | 1 | 64 |
ИТОГО | 1236 | - | 1980 |
Диаграмма 3.6.
Зависимость пропускной способности контрольного участка № 4 от скорости движения транспортного потока.
На диаграмме видно, что на данном контрольном участке после снятия трамвайного движения интенсивность выросла на 86% с 664 авт/час в 2004 году до 1236 авт/час в 2005. Оптимальная пропускная способность участка и безопасность обеспечивается при средней скорости движения 30 км/ч. Участок имеет ресурс пропускной способности. Однако все факторы, снижающие плавность транспортного потока (неудовлетворительное состояние дорожного покрытия, неубранный снег, ремонтные работы и т.д.), могут привести к снижению пропускной способности рассматриваемого контрольного участка.
Существующая ситуация на остальных контрольных точках представлена в приложении Б.
Общий уровень аварийности
За период 1999-2003г. г. на автомобильной дороге “Подъезд к г. Северодвинску" произошло 165 учетных дорожно-транспортных происшествий, в результате которых:
погибли 35 человек
получили ранения 250 человек.
Динамика изменения этого количества учетных ДТП, а также административных ДТП, произошедших за период 1999-2003г. г., иллюстрируется
Диаграммами 1 и 2. Динамика изменения количества учетных и административных ДТП на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг.
Диаграмма 1 показывает, что после периода относительной статистической стабильности ежегодного количества учетных ДТП (1999-2001гг.) последовал их "всплеск", который привел почти к двукратному росту уровня аварийности. После этого, в 2003г. количество учетных ДТП приобрело тенденцию к снижению. Однако, диаграмма административных ДТП, показывающая их стабильный рост с 2001г., свидетельствует о наличии общей тенденции роста аварийности на а/д “Подъезд к г. Северодвинску" следуя тенденции прироста интенсивности движения.
Справка:
Во всех странах отмечается следующая закономерность:
сразу после проведения реконструкции дороги с устройством спрямлений и улучшением условий движения на дороге, количество ДТП и их тяжесть возрастают.
Объяснение: прямые и широкие участки дороги провоцируют водителя к увеличению скорости движения.
Распределение ДТП по элементам плана и профиля дороги.
Таблица 10 приводит данные о распределении количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг. в зависимости от элементов плана и профиля дороги.
Таблица 10. Влияние элементов плана и профиля на распределение количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг.
Комбинация элементов плана и профиля
| Количество ДТП |
Итого ДТП |
Средний показатель,% | ||||
1999 | 2000 | 2001 | 2002 | 2003 | |||
Прямая в плане, горизонтальный участок |
26 |
22 |
24 |
44 |
34 | 150 |
91,0 |
Кривая в плане, горизонтальный участок | - |
2 | - |
4 |
2 | 8 |
4,2 |
Прямая в плане, уклон |
1 |
1 |
2 |
|
1 | 5 |
2,8 |
Кривая в плане, конец спуска |
1 | - | - | - | - | 1 |
1,0 |
Кривая в плане, вершина подъема | - | - | - |
1 | - | 1 |
1,0 |
Итого | 28 | 25 | 26 | 49 | 37 | 165 | 100% |
Графическая интерпретация данных Таблицы 10 приведена на Диаграмме 14.
Диаграмма 14. Распределение количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг. в зависимости от элементов плана и профиля дороги
Согласно статистике, приведенной в Таблице 10 большая часть ДТП (91% случаев) происходят на прямых горизонтальных участках дороги, что подтверждает общепризнанную международную тенденцию: прямые участки дороги провоцируют водителей на движение с высокими скоростями, следствием чего является увеличение риска ДТП с тяжелыми последствиями.
3. Пересечения и примыкания.
Статистика свидетельствует, что с увеличением количества пересечений и примыканий на 1 км дороги, количество ДТП возрастает, поскольку возрастает вероятность неправильной оценки ситуации и возникновения ошибок. Изучения показывают следующее приближенное соотношение между риском ДТП и количеством пересечений и примыканий на 1 км дороги (Таблица 11).
Таблица 11. Зависимость количества ДТП от количества пересечений в одном уровне (по данным Справочника по безопасности движения, Осло/Копенгаген, 1996)
Количество пересечений и примыканий на 1 км | Относительное количество ДТП |
0-5 | 1.00 |
6-15 | 1.25 - 2.50 |
16 - 30 | 1.75 - 3.00 |
30 и более | 2.50 - 6.00 |
Отмечается, что для пешеходов и велосипедистов, по мере возрастания плотности пересечений и примыканий к главной дороге, риск ДТП возрастает в большей степени, чем для остальных участников дорожного движения.
На а/д “Подъезд к г. Северодвинску" расположено 5 примыканий и 69 съездов, 8 из которых являются двухсторонними. В среднем на 1 км дороги приходится 2 примыкания/съезда. Наибольшее количество съездов расположено на км 1-2 (5), км 19-20 (5), км 30-31 (6), км 34-35 (12). Так, относительное количество ДТП, прогнозируемое для рассматриваемой дороги, превышает норму (1.0) на 25%.
4. Обустройство пересечений и примыканий.
Относительное количество ДТП на сопоставимых по интенсивности движения пересечениях и примыканиях может значительно отличаться в зависимости от их обустройства, принятой организации движения и качества содержания.
К основным факторам риска ДТП относятся:
количество пересекающихся дорог,
доля транспортных средств, въезжающих с второстепенных дорог на главную,
способ организации движения на пересечении или примыкании и скоростной режим,
обустройство пересечения или примыкания и качество его содержания.
Относительное количество ДТП на пересечениях дорог (Х-образный перекресток) примерно вдвое выше показателя ДТП для примыкания (Т-образный перекресток). Существует закономерность - относительное количество ДТП увеличивается как функция доли автомобилей, въезжающих на главную дорогу с второстепенных дорог.
Детальная характеристика обустройства примыканий и съездов на а/д “Подъезд к г. Северодвинску" будет рассматриваться в разделе Аудит безопасности.
5. Скоростной режим движения.
По своей продолжительности период автомобилизации ничтожен по сравнению с периодом эволюции самого человека. Человек имеет физические и психические способности (органы чувств, физические возможности и психические данные) адаптированные к скоростям движения порядка 5-15 км/час. Чем выше скорость движения, тем менее способен человек адекватно реагировать в условиях критической ситуации.
Изучения подтверждают устойчивую зависимость между скоростью движения и относительным количеством происшествий. Выявлено ожидаемое изменение количества ДТП с погибшими и ранеными для определенных величин изменения средней скорости движения (Таблица 12).
Таблица 12. Зависимость количества ДТП от скорости движения (по данным Справочника по безопасности движения, Осло/Копенгаген, 1996)
Изменение средней скорости движения | Изменение количества ДТП с ранеными | Изменение количества ДТП с погибшими |
рост 15% | рост 35-45% | рост 70-80% |
рост 10% | рост 20-30% | рост 50-60% |
рост 5% | рост 10-15% | рост 20-30% |
Снижение 5% | снижение 10-15% | снижение 15-25% |
Снижение 10% | снижение 15-25% | снижение 30-40% |
Снижение 15% | снижение 25-35% | снижение 40-50% |
Отмечается, что на практике наблюдаемая закономерность может усугубляться под влиянием внешних факторов, например, при неблагоприятных погодных условиях, производстве дорожных работ и т.д.
Статистические данные измерений фактических скоростей движения по пилотной дороге и влиянии их на аварийность отсутствуют.
6. Концентрация объектов придорожной инфраструктуры и меры, предпринятые для снижения риска от маневрирования транспортных средств вблизи этих объектов.
В настоящее время а/д "Подъезд к г. Северодвинск" придорожная инфраструктура представлена: 3-мя действующими автозаправочными станциями и одной строящейся, 2-мя придорожными кафе.
Развивающиеся рыночные отношения неизбежно приводят к развитию придорожного сервиса и росту числа объектов сферы обслуживания. Большая часть существующих объектов на а/д "Подъезд к г. Северодвинск" тяготеют к населенным пунктам и представляет элементы повышенного риска ДТП. Ни одно из кафе не имеет подъезда обеспеченного элементами снижения риска (переходно-скоростные полосы и оборудованной парковки), что создает проблемы при маневрировании транспортных средств при подъезде/выезде к данным объектам. Для снижения риска возникновения ДТП необходимы правильное размещение объектов, их инженерное оборудование на стадии проектирования, устройство полос отгона для плавного отделения из основного потока при заезде на территорию объектов и плавном вливании в поток при выезде. Въезды на территорию объектов придорожной инфраструктуры являются примыканием к главной дороге, т.е. их размещение и обустройство регламентируется российскими СНиПами.
Справка:
Влияние использования ближнего света фар в светлое время суток на уровень аварийности
Одним из наиболее частых объяснений виновников ДТП является: не заметил, поздно увидел, неточно оценил расстояние. Поэтому повышение заметности транспортных средств является одним из факторов, снижающих риск ДТП.
Европейская статистика и многочисленные исследования подтверждают, что включенный в дневное время ближний свет фар снижает количество ДТП со столкновениями на 18% и ДТП при совершении левого поворота до 40%.
Эксперимент по использованию ближнего света фар в светлое время суток проводился УГИБДД УВД Мурманской области в декабре-марте 2002-03гг. Результат - 5% снижение количества ДТП по отношению к аналогичному периоду прошлого года на фоне общего прироста интенсивности движения.
Достигнутый положительный результат послужил основанием для продолжения эксперимента в 2004г. Основной проблемой в ходе эксперимента является рекомендательный характер мероприятия, что требует проведения разъяснительных кампаний для водителей. Аналогичный эксперимент проводится в республике Карелия.
2. Неблагоприятные погодные условия.
Согласно международной практике во время осадков количество ДТП увеличивается (Диаграмма 17). Отмечается также, что неожиданные осадки после продолжительного сухого периода вызывают резкое увеличение количества ДТП.
Затяжные осадки вызывают адаптацию водителей, в результате чего количество ДТП постепенно уменьшается.
Диаграмма 17Сравнение уровней ДТП с погибшими на скоростных дорогах Японии для различных погодных условий (Данные министерства земель, инфраструктуры и транспорта Японии)
Распределение ДТП по погодным условиям.
Таблица 14 приводит данные о распределении количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг. в зависимости от погодных условий.
Таблица 14. Влияние погодных условий на распределение количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг.
Состояние погоды | Количество ДТП | Итого ДТП | Средний показатель в% | ||||
1999 | 2000 | 2001 | 2002 | 2003 | |||
1-ясно | 13 | 16 | 12 | 23 | 13 | 77 | 47,4 |
2-пасмурно | 12 | 7 | 8 | 16 | 18 | 61 | 36,3 |
3-туман | 0 | 0 | 0 | 1 | 1 | 2 | 1,2 |
4-дождь | 1 | 1 | 0 | 5 | 1 | 8 | 4,8 |
5-снегопад | 2 | 1 | 6 | 4 | 4 | 17 | 10,3 |
Итого | 28 | 25 | 26 | 49 | 37 | 165 | 100% |
Графическая интерпретация данных Таблицы 14 приведена на Диаграмме 18.
Диаграмма 18. Распределение количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг. в зависимости от погодных условий
Таблица 14 и Диаграмма 18 показывают, что почти половина учетных ДТП произошла в ясную погоду. Используя метод бэнчмаркинга, становится очевидным несоответствие влияния погодных условий на количество ДТП на а/д “Подъезд к г. Северодвинску" с общей международной тенденции. Использование ближнего света фар в светлое время суток также содержит значительный потенциал для снижения количества ДТП, как в солнечную погоду, делая транспортные средства более заметными, так и в дождливую погоду, когда эффективность боковых зеркал снижается.
3. Состояние дорожного покрытия.
Исходя из практики всех стран, на скользком дорожном покрытии, сразу после наступления гололеда, количество ДТП возрастает. По мере адаптации водителей к сложным дорожным условиям, количество ДТП постепенно уменьшается.
Скандинавские изучения показывают, что ровность покрытия, в целом, имеет второстепенное значение для безопасности дорожного движения, если не требуется совершение маневров с выездом на встречную полосу. Неровности дорожного покрытия в сочетании с неблагоприятными погодными условиями могут приводить к увеличению количества ДТП.
Согласно исследованиям, проведенным в Норвегии, в среднем около 22% всех зарегистрированных ДТП с травматизмом происходит на влажном или скользком покрытии дороги. При этом риск ДТП на влажном покрытии выше, чем на сухом:
риск ДТП для сухого покрытия,
риск ДТП для мокрого покрытия в светлое время суток
риск ДТП для мокрого покрытия в темное время суток
Примечание: Следует учитывать, что выводы скандинавских изучений сделаны при обязательном использовании шипованых шин в холодный период года. Поскольку в России применение шипованых шин в зимнее время не является требованием обязательным, и значительная часть транспортных средств использует "летнюю резину" в течение всего года, то правильность скандинавских выводов для российской практики требует проверки.
Распределение ДТП по состоянию проезжей части
Таблица 15 приводит данные о распределении количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003гг. в зависимости от состояния покрытия проезжей части.
Таблица 15. Влияние состояния покрытия на распределение количества учетных ДТП, произошедших на а/д "Подъезд к г. Северодвинску" за период 1999-2003г.
Состояние проезжей части | Количество ДТП | Итого ДТП | Средний показа-тель% | ||||
1999 | 2000 | 2001 | 2002 | 2003 | |||
1-сухая | 15 | 13 | 10 | 19 | 16 | 73 | 44,0 |
2-мокрая | - | 4 | 3 | 11 | 7 | 25 | 15,0 |
3-загрязненная | - | - | - | - | - | - | 0 |
4-свежеуложенное покрытие, п/о | - | - | - | - | - | - | 0 |
5-заснеженная |
| 1 | 1 | 2 | 1 | 5 | 3,0 |
6-гололедица | 9 | 4 | 7 | 6 | 7 | 33 | 21,0 |
7-обработанное противогололедными материалами | 3 | 1 | 4 | 8 | 5 | 21 | 12,5 |
8-снежный накат | 1 | 2 | 1 | 3 | 1 | 8 | 4,5 |
Итого | 28 | 25 | 26 | 49 | 37 | 165 | 100% |
Графическая интерпретация данных Таблицы 15 приведена на Диаграмме 19.
Диаграмма 19. Распределение количества учетных ДТП.
Таблица 15 показывает, что больше всего ДТП происходит на сухом покрытии. Скользкое покрытие сопутствовало 21% ДТП. В целом на мокром и скользком покрытии происходит 36% учетных ДТП (против 22% в Норвегии).
Норвежский показатель ниже по причине более жестких требований относительно состояния шин (глубина рисунка протектора шины) и использования шипованых шин в зимнее время года.
Отсутствие данных о состоянии покрышек и использовании шипованой резины в карточках учета ДТП на северодвинской дороге не позволяет оценить, каким образом состояние и тип покрышек влияет на аварийность. Имеющаяся статистика наводит на вывод, что риск ДТП на а/д "Подъезд к г. Северодвинску" является наименьшим на заснеженном покрытии и покрытии с накатом, поэтому, чем меньше проводится мероприятий по содержанию дороги - тем дорога безопаснее.
А поскольку из мировой практики известно обратное, то следует: усомниться в правильности заполнения карточек учета ДТП (указание состояния проезжей части), происходивших на рассматриваемой дороге за период 1999-2003г.; предположить сознательное их заполнение со смягчением роли состояния покрытия в произошедших ДТП для того, чтобы предупредить подачу исков в суд на организацию, которая содержит дорогу.
4. Перегруженность дороги транспортными средствами.
Известно, что вероятность ДТП увеличивается пропорционально интенсивности движения. Этому есть объяснения:
Во-первых, чем больше участников дорожного движения, тем выше математическая вероятность конфликтных ситуаций.
Во-вторых, движение в насыщенном транспортном потоке характеризуется повышенной нагрузкой на психику водителей, поскольку движение в таких условиях требует от водителя быстрой реакции, напряженного внимания, прогнозирования действий других водителей, а также ограничивает возможности для маневра.
Возрастает количество ошибок участников дорожного движения, конфликтных ситуаций, что неизбежно приводит к росту количества ДТП (Диаграмма 20).
Диаграмма 20Влияние перегруженности на уровень ДТП на главных дорогах Японии (Данные министерства земель, инфраструктуры и транспорта Японии)
Примечание: за 1.0 на шкале уровня перегруженности принимается проектная пропускная способность дороги.
Влияние интенсивности движения на уровень аварийности.
Согласно многолетним исследованиям, проведенным в Северных странах, усредненный риск происшествия при одинаковых условиях движения равен:
0,95 для происшествий с травматизмом
0,70 для происшествий с погибшими
Диаграмма 21 показывает взаимосвязь между интенсивностью движения и количеством происшествий в Северных странах.
Диаграмма 21 Взаимосвязь интенсивности движения и количества ДТП с ранеными и погибшими в Северных странах в 1985 - 1995. гг.
Из Диаграммы следует, что при увеличении интенсивности движения с 1 до 100 количество происшествий с ранениями возрастает с 1 до 80, а количество ДТП с погибшими увеличивается с 1 до 25.
Это означает на фоне общей динамики прироста количества ДТП по мере роста интенсивности, их тяжесть увеличивается более медленными темпами.
Это объясняется тем, что перегруженность снижает скорость движения транспортных средств, а, следовательно, и вероятность гибели в случае ДТП.
Зависимость интенсивности движения и количества учетных ДТП на а/д “Подъезд к г. Северодвинску" иллюстрируется Диаграммой 22.
Диаграмма 22 Взаимосвязь интенсивности движения и количества учетных ДТП на а/д “Подъезд к г. Северодвинску"
Взаимосвязь между интенсивностью движения и ДТП с материальным ущербом менее известна. Статистика административных ДТП считается недостаточно надежной для того, чтобы выявить взаимосвязь между интенсивностью движения и уровнем аварийности. Однако, из зарубежных исследований известно, что административные ДТП чаще происходят в населенных пунктах. Это может свидетельствовать о том, что их количество увеличивается быстрее, чем интенсивность движения, т.е.1% -ное увеличение интенсивности движения приводит к более чем 1% -ному увеличению количества ДТП с материальным ущербом.
Динамика увеличения количества административных ДТП на а/д “Подъезд к г. Северодвинску" (см. Диаграмму 2) подтверждает этот вывод. В частности, прирост интенсивности движения в 2002г. на 46% привел к увеличению количества ДТП с материальным ущербом на 60%.
С общей тенденцией не увязываются показатели 2001г., когда было зафиксировано снижение количества ДТП с материальным ущербом на 25% по отношению к предыдущему году при приросте интенсивности движения 4%. Это может свидетельствовать о том, что были зарегистрированы не все административные ДТП.
Предполагается, что введение обязательного страхования гражданской ответственности приведет к улучшению учета административных ДТП.
5. Производство дорожно-ремонтных работ.
Наличие на дороге участков производства дорожно-ремонтных работ создает препятствие для плавного движения транспортного потока, ограничивая пропускную способность дороги. В этом случае, на участке производства дорожных работ может возникать перегруженность при соответствующих негативных последствиях. Дорожные работы являются также фактором неожиданности для водителя, что особенно опасно на участке, которым водитель привычно пользуется ежедневно.
Поэтому, самым важным при производстве дорожных работ является:
Использование средств сигнализации для привлечения внимания водителей, особенно в темное время;
Информирование о проведении на дороге дорожных работ через средства массовой информации и сообщение об альтернативных маршрутах движения для разгрузки участка с ограниченной пропускной способностью;
Использование "эффекта присутствия" инспекторов ГИБДД на подъездах к опасным участкам.
В настоящее время на северодвинской дороге ведутся дорожно-ремонтные работы.
Заключение
За период 1999-2003г. г. на автомобильной дороге “Подъезд к г. Северодвинску" произошло 165 учетных дорожно-транспортных происшествий, в результате которых:
погибли 35 человек
получили ранения 250 человек.
Динамика изменения количества ДТП свидетельствует о тенденции ежегодного прироста общего количества ДТП с одновременным увеличением доли ДТП с тяжелыми последствиями.
Рост аварийности совпадает с периодом роста интенсивности движения в 1999-2003гг. В среднем, в течение рассматриваемого пятилетнего периода транспортный поток имел следующий состав:
легковые автомобили57%
грузовые автомобили36%,
автобусы 7%.
Анализ показал, что в подавляющем большинстве участниками ДТП с тяжелыми последствиями на а/д "Подъезд к г. Северодвинску" за период 2000-2003гг. становились легковые автомобили (71%) и пешеходы (15%).
Наиболее частыми видами ДТП являются следующие (среднее значение за период 1999-2003гг.):
столкновение транспортных средств40%
наезд на пешехода28%
опрокидывание транспортных средств18%
остальные виды ДТП 14%
Самое значительное число пострадавших - как погибших, так и раненых, дают ДТП со столкновениями транспортных средств. В среднем:
в каждом ДТП этого вида 2 человека получают серьезные ранения,
в каждом третьем ДТП со столкновением гибнет человек.
Тяжелые последствия характерны для ДТП с наездом на пешеходов. Четверть пострадавших пешеходов гибнет, а выжившие получают тяжкие увечья.
Наиболее частыми причинами ДТП являются превышение установленной скорости, несоответствие скорости конкретным условиям и выезд на полосу встречного движения.
Наиболее опасными сочетаниями являются:
выезд на полосу встречного движения на скорости, несоответствующей конкретным условиям,
управление транспортным средством в состоянии алкогольного опьянения с превышением скорости.
ДТП с участием пешеходов в основном связаны с переходом проезжей части в неустановленном месте и с ходьбой вдоль проезжей части попутного направления без применения элементов повышения собственной "заметности" (без светоотражающих элементов на одежде и пр).
Кроме этого, ежегодно 12% учетных ДТП в графе “Нарушения правил дорожного движения” карточек учета ДТП указываются “иные нарушения”. Такая формулировка причин ДТП не позволяет выполнять последующий анализ причин ДТП и предложить мероприятия по их устранению.
Наибольшее количество ДТП регистрируется в холодный период года с сентября по март, а пик аварийности приходится на октябрь (15.4%). В теплый период года аварийность снижается.
Около половины всех учетных ДТП происходит в ясную погоду, что противоречит данным международной статистики. Предполагается, что фиксирование условий, сопутствующих ДТП производится неточно.
Риск ДТП на а/д "Подъезд к г. Северодвинску" неравномерен в течение суток, возрастая во второй половине дня.
Около 60% ДТП происходят днем, при естественном освещении. Отсутствие искусственного освещения в темное время суток на участках, где это необходимо сопутствовало 31% ДТП. Еще 5.5% учетных ДТП произошли в темное время суток, когда существующее искусственное освещение имелось, но не было включено. В сумме в темное время суток за рассматриваемый период произошло 36.5% ДТП, что соответствует существующим мировым тенденциям (30-40% ДТП).
Анализ показал, что большая часть ДТП (91% случаев) происходит на прямых горизонтальных участках дороги, что подтверждает общепризнанную тенденцию: прямые участки дороги провоцируют водителей на движение с высокими скоростями.
В карточках учета отсутствуют данные о поле, возрасте, стаже вождения, психологическом состоянии и самочувствии участников ДТП, техническом состоянии и оборудовании ТС (например, использование ремней безопасности), особенностях дорожного окружения.
В целом можно сказать, что:
Качество исходных данных является низким, не полным, часто недостоверным. Наличие более качественных данных получаемых по результатам расследований ДТП с указанием всех сопутствующих факторов, безусловно, позволило бы сделать более точный анализ причин ДТП, а следовательно, расширить перечень возможных мероприятий, способных снизить аварийность как на пилотной а/д "Подъезд к г. Северодвинску", так и на других дорогах общего пользования Архангельской области.
Тем не менее, имеющиеся данные указывают на подтверждение ряда закономерностей, присущих другим странам. Поэтому вполне можно допустить, что те мероприятия, что с успехом зарекомендовали себя в других странах (особенно в тех, что имеют сходные климатические условия), применимы для повышения безопасности дорог Архангельской области.
Одной из задач данного проекта является подбор наиболее результативных методов анализа причин ДТП в дополнение к традиционному методу анализа статистики. Таким методом может стать метод аудита безопасности, который успешно применяется в целях:
выявления причин ДТП при отсутствии достаточного количества данных в карточках учета ДТП;
выявления потенциально опасных участков, где может произойти ДТП при неблагоприятном стечении факторов (предупреждение ДТП).
Подробное описание концепции аудита безопасности представлено в Техническом отчете №2.
Результаты применения метода аудита безопасности на а/д “Подъезд к г. Северодвинску" приводятся в Техническом
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
К ДИПЛОМНОЙ РАБОТЕ
"Повышение безопасности движения на пр. Ленинградский: снижение аварийности"
Дипломник: Локтева Анастасия Николаевна
г. Архангельск 2004 г.
Содержание
1. Характеристика г. Архангельска
1.1 Общая историческая справка г. Архангельска
1.2 Природно-климатические условия
1.3 Экономическая, административная и территориальная характеристика Архангельска
2. Транспортная сеть города Архангельска
2.1 Общая схема дорожной сети
2.2 Общая характеристика проспекта Ленинградский
3. Анализ по составу и интенсивности движения по пр. ленинградский (за период 2004-2005 г).
3.1 Характеристика состава движения транспортных средств по данным учета интенсивности на перекрестках
3.1.1 Результаты учета интенсивности движения
3.1.2 Общие выводы по составу транспортных потоков на контрольных участках проспекта Ленинградский за 2005 г.
3.2 Анализ результатов учета интенсивности
3.2.1 Основные принципы методики определения пропускной способности проезжей части
3.2.2 Ограничивающие условия, влияющие на пропускную способность пр. Ленинградский
3.2.3 Пример расчета пропускной способности автодороги непрерывного движения с тремя полосами движения
4. Анализ имеющихся статистических данных по условиям дорожного движения на пр. Ленинградский
4.1 Характеристика пр. Ленинградский
4.2.1Общий уровень аварийности
4.2.2 Интенсивность движения и состав транспортного потока
4.2.3 Распределение дорожно-транспортных происшествий
4.2.4 Влияние дорожной инфраструктуры на уровень аварийности
4.2.5 Влияние неблагоприятных внешних факторов на уровень ДТП
Заключение
Характеристика г. Архангельска
1.1 Общая историческая справка г. Архангельска
Архангельск это исторический город нашей страны. Основали его новгородцы в XII веке на месте современного Архангельска Михайло-Архангельский монастырь, к которому прилегали поселение и пристань.
Вокруг Михайло-Архангельского монастыря в 1583-1584 гг. по указу царя Ивана Грозного на мысе Пур-Наволок правого берега Северной Двины двинские воеводы П.А. Нащокин и А.Н. Волохов (Залешанин) возвели деревянную крепость, своим величием производившую на прибывающих сюда иностранцев сильное впечатление.
Основан город 4 марта 1583 г. Поначалу новый город назывался Новым городом, или Новым Холмогорским городом (Новохолмогорами), но жители называли его по монастырю - Архангельский город, а затем город получил современное наименование - Архангельск.
Новый город был единственным в то время морским портом. В XVII веке Архангельск вступил в эпоху своего расцвета благодаря развитию торговли с Англией и другими странами Западной Европы. Эти торговые связи осуществлялись тогда путем захода морских судов в Белое море.
В 1667 г. сильный пожар, от которого город очень пострадал, его пришлось отстраивать заново. Начато строительство каменных гостиных дворов, возводившихся по чертежу, присланному из Москвы. По проекту архитектора Д. Старцева в 1668 г. начато строительство первого комплекса гостиных дворов, оно было закончено в 1684 г. к 100-летию Архангельска.
С приходом к власти Петра I Архангельску суждено было сыграть существенную роль в становлении русского военно-морского и торгового флота. В 1693 г. при личном участии Петра I в Архангельске было основано Адмиралтейство, а на близлежащем острове Соломбала заложена верфь. В 1694 г. состоялся спуск на воду корабля “Св. Павел" - первого торгового судна, построенного в Архангельске.
В 1762 г. указом Екатерины II Архангельск уравнен в торговых правах с Санкт-Петербургом. В 1780 г. Архангелогородская губерния преобразована в Архангельскую область в составе Вологодского наместничества. Но уже в 1784 г. Архангельск стал административным центром самостоятельного Архангельского наместничества.
С 1794 г. был утвержден новый план застройки города, согласно которому были сформированы параллельные набережной широкие улицы.
В период наполеоновских войн и в связи с так называемой континентальной блокадой Великобритании в 1807-1813 гг. Архангельск испытал новый экономический подъем, так как был в то время единственным в России портом, куда могли поступать колониальные товары.
В конце XIX - начале XX века Архангельск стал крупнейшим лесопромышленным и лесоэкспортным центром страны. Город служил также важной базой для освоения Арктики и налаживания судоходства по Северному морскому пути.
В предвоенные годы административный статус Архангельска неоднократно менялся в связи с изменениями в системе административного деления страны.
Ныне существующая Архангельская область создана 23 сентября 1937 г. в результате разделения Северной области на Архангельскую и Вологодскую области.
Современный Архангельск продолжает играть важную роль как крупнейший центр лесообрабатывающей и лесохимической промышленности. В частности, здесь расположены крупные лесопильно-деревообрабатывающие комбинаты (ЛДК, в том числе Соломбальский ЦБК), гидролизный завод и другие предприятия. Значительная часть продукции лесной промышленности идет на экспорт. Имеются также предприятия машиностроения (специализируются на выпуске оборудования для лесной и лесообрабатывающей промышленности) и судостроения. Ведущие государственные предприятия рыбной промышленности - база тралового флота, рыбокомбинат и Архангельский опытно-водорослевый комбинат, который занимается переработкой морских водорослей.
Дата: 2019-07-30, просмотров: 388.