Особенности строения и свойства клеточных мембран
Для всех клеточных мембран характерен один принцип строения (рис.1). Их основу составляют два слоя липидов (молекул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды).
Рис.1. Схема строения клеточной мембраны
Молекулы мембранных липидов имеют головку (участок, притягивающий воду и стремящийся взаимодействовать с ней, называемый гидрофильным) и хвост, который является гидрофобным (отталкивается от молекул воды, избегает их соседства). В результате такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гидрофобные хвосты - друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и растворимых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.
В состав мембран также входят белки. Их молекулы по объему и по массе в 40-50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7 - 10 нм. Несмотря на то, что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы расположены разрозненно. Они как бы растворены в мембране, могут в ней смещаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаичным. Молекулы липидов тоже могут смещаться вдоль мембраны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавливаться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.
Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интегральными. Есть также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.
Белки клеточных мембран выполняют многочисленные Функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеется около 100 разных белков.
Среди важнейших функций мембранных белков отмечаются:
1) рецепторная - взаимодействие с сигнальными молекулами и передача сигнала в клетку;
2) транспортная - перенос веществ через мембраны и обеспечение обмена между цитозолем и окружающей средой. Существует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые пронизывают мембрану и через них идет диффузия определенных веществ между цитозолем и внеклеточным пространством. Такие каналы чаще всего ионоселективные, т.е. пропускают ионы только одного вещества. Есть также каналы, избирательность которых меньшая, например они пропускают ионы Na+ и К, К и С1~. Есть также белки-переносчики, которые обеспечивают транспорт вещества через мембрану за счет изменения своего положения в этой мембране;
3) адгезивная - белки совместно с углеводами участвуют в осуществлении адгезии (слипание, склеивание клеток при иммунных реакциях, объединение клеток в слои и ткани);
4) ферментативная - некоторые встроенные в мембрану белки выполняют роль катализаторов биохимических реакций, протекание которых возможно только в контакте с клеточными мембранами;
5) механическая - белки обеспечивают прочность и эластичность мембран, их связь с цитоскелетом. Например, в эритроцитах такую роль выполняет белок спектрин, который в виде сетчатой структуры прикреплен к внутренней поверхности мембраны эритроцита и имеет связь с внутриклеточными белками, составляющими цитоскелет. Это придает эритроцитам эластичность, способность менять и восстанавливать форму при прохождении через кровеносные капилляры. [11]
Углеводы составляют лишь 2-10% от массы мембраны, количество их в разных клетках изменчиво. Благодаря углеводам осуществляются некоторые виды межклеточных взаимодействий, они принимают участие в узнавании клеткой чужеродных антигенов и совместно с белками создают своеобразную антигенную структуру поверхностной мембраны собственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для передачи сигнальных молекул. Соединения белков с сахарами называют гликопротеинами. Если же углеводы соединяются с липидами, то такие молекулы называют гликолипидами.
Благодаря взаимодействию входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.
Дата: 2019-07-24, просмотров: 269.