Оптоэлектронные приборы: фоторезисторы, свето-, фотодиоды, фототранзисторы, фототиристоры, оптроны. Назначение, характеристики, основные параметры.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Светодиодами называются полупроводниковые приборы, преобразующие электрические сигналы в оптическую лучистую энергию некогерентного светового излучения.

При приложении к светодиоду прямого напряжения происходит инжекция носителей заряда, которая в сочетании с рекомбинацией с неосновными носителями вызывает излучение.

Основные параметры:

2) сила света (десятые доли÷единицымКанделл);

3) яркость (десятки÷сотни Кандел на кв.см);

4) постоянное прямое напряжение ;

5) цвет свечения и длина волны, соотв.-е максимальному световому потоку;

6) максимально допустимый постоянный прямой ток (десятки мА);

7) максимально допустимое постоянное обратное напряжение (единицы В).

Используются: в оптических линиях связи, индикаторных устройствах, оптопарах.

Фотодиодом называется фотоэлектрический прибор, имеющий один р- n-переход. В основе его работы лежит явление возрастания обратного тока р- n-перехода при его освещении, т.е. световой поток управляет обратным током фотодиода.

Фотодиоды имеют структуру обычного р- n-перехода (см. рис.), где а) - условное обозначение фотодиода, б) - структура фотодиода. Вследствие оптического возбуждения в р и n областях возникает неравновесная концентрация носителей заряда.

 

На границе перехода неосновные носители заряда под влиянием электрического поля, перебрасываются через переход в область, где они являются основными носителями. Электрический ток, созданный ими есть полный фототок. Если р- n-переход разомкнут, то перенос носителей заряда, генерируемых светом, приводит к накоплению отрицательного в n-области и положительного в р-области зарядов. Новое равновесное состояние соответствует меньшей высоте потенциального барьера, равной (Uк-Еф). ЭДС Еф, возникающую при этих процессах, на значение которой снижается потенциальный барьер Uк в р- n-переходе, называют фотоэлектродвижущейсилой (фото-ЭДС) В данной ситуации фотодиод работает в режиме фотогенератора, преобразуя световую энергию в электрическую.

Фотодиод может работать совместно с внешним источником (рис. в). При освещении фотодиода поток неосновных носителей заряда через р- n -переход возрастает. Увеличивается ток во внешней цепи, определяемый напряжением источника и световым потоком. Значение фототока можно найти из выражения Iф=SинтФ, где Sинт - интегральная чувствительность.

Фотодиод может включаться двумя способами:

· вентильный (гальванический) режим

· фотодиодный режим

 

Вольтамперные характеристикиосвещенногоp-n-перехода показаны на рисунке.

Энергетические характеристики, которые связывают фототок со световым потоком, являются одними из основных характеристик фотодиода. Причем фотодиод может быть включен без внешнего источника ЭДС (генераторный режим), так и с внешним источником (см. рис.) а) - генераторный режим; б) - при работе с внешним источником).

 

Достоинства: большое быстродействие.

Недостатки: невысокая фоточувствительность.

 

 

 

Рис.1. Оптрон с внутренней (а) и внешними (б) фотонными связями: 1, 6 – источники света; 2 – световод; 3, 4 – приемники света; 5 – усилитель.

Основным элементом оптоэлектроники является оптрон. Различают оптроны с внутренней (рис.1, а) и внешними (рис.1, б) фотонными связями. Простейший оптрон представляет собой четырехполюсник (рис.1, а), состоящий из трех элементов: фотоизлучателя 1, световода 2 и приемника света 3, заключенных в герметичном светонепроницаемом корпусе. При подаче на вход электрического сигнала в виде импульса или перепада входного тока возбуждается фотоизлучатель. Световой поток по световоду попадает в фотоприемник, на выходе которого образуется электрический импульс или перепад выходного тока. Этот тип оптрона является усилителем электрических сигналов, в нем внутренняя связь фотонная, а внешние - электрические.

Другой тип оптрона - с электрической внутренней связью и фотонными внешними связями (рис.1, б) - является усилителем световых сигналов, а также преобразователем сигналов одной частоты в сигналы другой частоты, например сигналов инфракрасного излучения в сигналы видимого спектра. Приемник света 4 преобразует входной световой сигнал в электрический. Последний усиливается усилителем 5 и возбуждает источник света 6.

Фототранзисторы представляют собой приемники лучистой энергии с двумя или с большим числом р-п-переходов, обладающие свойством усиления фототока при облучении чувствительного слоя. Фототранзистор соединяет в себе свойства фотодиода и усилительные свойства транзистора. Наличие у фототранзистора оптического и электрического входов одновременно позволяет создать смещение, необходимое для работы на линейном участке энергетической характеристики, а также компенсировать внешние воздействия. Для обнаружения малых сигналов напряжение, снимаемое с фототранзистора, должно быть усилено. В этом случае следует увеличить сопротивление выхода переменному току при минимальном темновом токе в цепи коллектора, создавая положительное смещение на базе.

 


 



Дата: 2019-07-24, просмотров: 269.