Пренебрегая операцией вычисления математического ожидания и полагая, что конечное множество данных содержит N отсчетов, получаем выборочный спектр
который может быть вычислен по конечной последовательности данных. Однако поскольку была опущена операция математического ожидания, эта оценка будет неустойчивой или несостоятельной. И для сглаживания применяется что-то вроде псевдоусреднения по ансамблю. Существует три различных типа сглаживания быстрых флюктуаций спектра.
Первый метод заключается в усреднении по соседним спектральным частотам. Если для вычисленный выборочный спектр на сетке частот , то модифицированная оценка периодограммы на частоте может быть получена посредством усреднения в P точках с каждой стороны от этой частоты
Обобщением этого подхода является обработка выборочного спектра с помощью фильтра нижних частот с частотной характеристикой . В этом случае модифицированную периодограмму можно записать в виде свертки частотной характеристики фильтра нижних частот и самого выборочного спектра
Вторым методом сглаживания выборочного спектра является усреднение по псевдоансамблю периодограмм за счет деления последовательности из N отсчетов данных на P неперекрывающихся сегментов по D отсчетов в каждом, так что DP<N (называемым периодограмма Бартлетта). Тогда p-ый сегмент будет состоять из отсчетов , где n=0,1,..,D-1,p=0,1,..P-1. Для каждого сегмента независимо вычисляется выборочный спектр в диапазоне частот
Далее на каждой частоте, представляющей интерес, P отдельных немодифицированных периодограмм усредняются, с тем чтобы получить окончательную оценку:
Математическое ожидание и дисперсия даются следующими выражениями:
Из выражения для дисперсии видно, что устойчивость спектральной оценки Бартлетта улучшается как величина, обратная числу сегментов P.
Третьим и одним из самых эффективных методов является метод периодограмм Уэлча. Основное отличие от периодограммы Бартлетта состоит в том, что здесь используется окно данных и осуществлено перекрывающееся сегментирование последовательности отсчетов. Применение окна данных дает незначительное ухудшение разрешения по частоте, так как сам спектр окна вносит погрешности в результирующий спектр, однако удается достичь уменьшения влияния боковых лепестков спектра прямоугольного окна, которое косвенно применяется при сегментировании последовательности данных. Целью перекрытия сегментов является увеличение числа усредняемых сегментов и тем самым уменьшение дисперсии оценки спектральной плотности мощности. Сам метод состоит в следующем. Пусть дана запись комплексных данных , которая разбивается на число сегментов D со сдвигом S отсчетов между соседними сегментами, тогда взвешенный p-ый сегмент будет состоять из отсчетов, где n = 0,1..D-1, p = 0,1..P-1, P=[(N - D)/S+1]. А выборочный спектр взвешенного p-ого сегмента в диапазоне частот
, где
И окончательный вид периодограммы Бартлетта приобретает вид :
Среднее и дисперсия оценки выглядят следующим образом (доказательство первого соотношения в приложении А):
При использовании перекрытия соседних сегментов можно сформировать большее число псевдореализаций, чем в методе Бартлетта, а это уменьшает величину дисперсии периодограммы Уэлча, хотя порядок имеет тот же самый. Экспериментальные результаты приведены в соответствующем разделе.
Дата: 2019-07-24, просмотров: 223.