Штуцер для отвода кубового остатка
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

VW = GW ∙ R,                                                                              (4.14)

где R – отношение количества кубового остатка и парожидкостной смеси, принимаем её равной 2.

VW = 0,302 ∙ 2 = 0,604 кг/с.

 0,025 м = 25 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметромXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 37 мм, с условным проходом Dу=25 мм.

Штуцер для вывода паров дистиллята

V = G/rП                                                                                          (4.15)

rП = r’ = 2,95 кг/м3

G = GD ∙ (R + 1)                                                                             (4.16)

G = 0,278  ∙ (6,6 + 1) = 2,113 кг/с.

V = 2,113/2,95 = 0,716 м3/с.

 0,245 м = 245 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметромXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 278 мм, с условным проходом Dу=250 мм.

Штуцер для ввода паров кубовой смеси

V = G/rП                                                                                       (4.17)

rП = r” = 2,96 кг/м3

G = GW ∙ (R+1)                                                                             (4.18)

G = 0,302 ∙ (6,6+1) = 2,295 кг/с.

V = 2,295/2,96 = 0,775 м3/с.

 0,255 м = 255 мм.

По ОН26-01-34-66 примем штуцер с наружным диаметромXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 278 мм, с условным проходом Dу=250 мм.

Емкости

Ёмкости рассчитываются на непрерывную работу в течении 2 - 8 часов. Предельные объемы емкостей находим из соотношения:

V(max) = G ∙ t(max)/p t(max) = V(max) ∙ p/G         

V(min) = G ∙ t(min)/p t(min) = V(min) ∙ p/G                                 (4.19)

G - массовый расход;

t - время работы;

р - плотность при 20 °С.

В данном случае нет необходимости в точном расчете плотности и, так как для всех жидкостей они схожи, возьмем ρ = 790 кг/м3.

1. Е1 - емкость для исходной смеси.

V(max) = 2088 ∙ 8/790 = 21 м3,

V(min) = 2088 ∙ 2/790 = 5,3 м3.

2. Е2 - емкости для кубового остатка:

V(max) = 1088 ∙ 8/790 = 11 м3,

V(min) = 1088 ∙ 2/790 = 2,8 м3.

2. Е3 - емкости для дистиллята:

V(max) = 1000 ∙ 8/790 = 10,1 м3,

V(min) = 1000 ∙ 2/790 = 2,5 м3.

Примем цилиндрические ёмкости с элептическими днищами, изготовленные из стали 12Х18H10Т:

Таблица 4.2. Ёмкости

Ёмкость для Длина L, м Внутренний диаметр D, м Объём V, м3 Толщина стенки S, мм
исходной смеси 4,5 2,4 20,5 3
дистиллята и кубового остатка 3,5 2 9 3

 

1. Е1 - емкость для исходной смеси:

t = 790 ∙ 20,5/2088 = 7,75 часов.

2. Е2 - емкости для дистиллята:

t = 790 ∙ 9/1000 = 7,11 часов

2. Е3 - емкости для кубового остатка:

t = 790 ∙ 9/1088 = 6,53 часов

Все емкости с целью облегчения технического обслуживания и промывки связаны с магистралями оборотной воды и пара.

Насосы

Для перекачки кубового остатка и исходной смеси исходя из расходы и высоты, на которую подаётся жидкость, выберем насосы из таблицы соответственно под номером 1 и 2:

Таблица 4.3 Герметичные насосы типа ЦГ

Наименование Р, КВт Подача/напор Т жидкости, °С Масса, кг.
1. ЦГ 6,3/20К-1,1-2 1,1 6,3 / 20 - 50… + 100 70
2. ЦГ 6,3/32К-2,2-2 2,2 6,3 / 32 - 50… + 100 79

Насосы ЦГ применяются в химической, газовой, топливно-энергетической, фармацевтической, нефтехимической, нефтяной, пищевой, мясо-молочной, холодильной и перерабатывающей промышленности и других производствах. Эксплуатация насосов без утечек и отсутствия обслуживающего персонала позволяет использовать их при работе с высокотоксичными, ядовитыми, химически активными жидкостями и сжиженными газами. Смазка и охлаждение насосов осуществляется перекачиваемой жидкостью. Уровень защиты - взрывобезопасный.

Предназначены для перекачивания в стационарных условиях жидкостей и сжиженных газов, пары которых могут образовывать с воздухом взрывоопасные смеси. Указанные жидкости могут быть нейтральными, агрессивными и вредными всех классов с кинематической вязкостью до 40 сСт и плотностью не более 1800 кг/м3. Допускается наличие твердых неабразивных включений с массовой долей до 0,2% и размером частиц не более 0,2 мм.

Рис. 4.1 Герметичный насос типа ЦГ

Материал проточной части: 12Х18Н10Т (исп. К) или 10Х17Н13М2Т (исп. Е) или ст. 3-10 (исп. А)

Изготавливаются на одно из напряжений 380 / 660 В.

В комплект поставки насосов входят: паспорт, ЗИП и принадлежности.

Условное обозначение электронасоса на примере 1ЦГ12,5/50К-4-2-У2:

1 - порядковый номер модернизации;

ЦГ - центробежный герметичный;

12,5 - номинальная подача (м3/ч);

50 - номинальный напор (м.);

К - условное обозначение по материалу ("К" - 12Х18Н10Т, "Е" - 10Х17Н13М2Т, "А" - ст. 3-10);

4 - номинальная мощность встроенного электродвигателя (кВт);

2 - конструктивное исполнение в зависимости от температуры и давления перекачиваемой жидкости;

У - климатическое исполнение;

2 - категория размещения;

При выполнении с одним из вариантов наружного диаметра рабочего колеса, после величины напора добавляется "а" или "б".



Заключение

В процессе проделанной работы была рассчитана ректификационная установка для разделения смеси диоксан-толуол.

Были получены следующие данные:

диаметр колонны - 1200 мм;

высота колонны – 34 м;

толщина цилиндрической обечайки, элептического днища и крышки 16 мм.

Колонна состоит из 5 секций (3 в верхней части колонны и 2 в нижней) по 5 метра каждая, с расстоянием между секциями 1,215 м. В качестве перераспределитель жидкости принята тарелка ТСН-II.  Жидкости подаются на тарелки ТСН-III.

Колонна насадочного типа работает в плёночном режиме.

Были выбраны в качестве насадки керамические кольца Палля размером 35х35х4, с удельной поверхностью а=165 м23, свободным объём ε=0,76 м33, насыпной плотность 540 кг/ м3 , dэ=0,018, числом штук в м3 18500.

Рассчитали тепловой и механический баланс установки, построили графики и таблицы.
Список использованной литературы

1. Касаткин А. Г., Основные процессы и. аппараты химической технологии. Изд. 9-е. М.: Химия, 1973. 750 с.

2. Справочник коксохимика. Т. 3. М.: Металлургия, 1966. 391 с.

3. Рамм В. М. Абсорбция газов. М.: Химия, 1976. 655 с.

4. Коробчанский И. Е., Кузнецов М. Д. Расчет аппаратуры для улавливания химических продуктов коксования. М.: Металлургия. 1972. 295 с.

5. Александров И. А. Ректификационные и абсорбционные аппараты. М.: Химия, 1978. 277 с.

6. Лащинский А. А., Толчинский А. Р. Основы конструирования и расчета химической аппара­туры. Л.: Машиностроение, 1970. 752 с.

7. Стабников В. Н. Расчет и конструирование контактных устройств ректификационных и абсорб­ционных аппаратов. Киев: Техника, 1970. 208 с.

8. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппа­ратов. Л.: Химия, 1976, 552 с.

9. Бретшнайдер С. Свойства газов и жидкостей. М.— Л.: Химия, 1970. 535 с.

10. Хоблер Т. Массопередача и абсорбция. Л.: Химия, 1964. 479 с.

11. Дытнерский Ю.А., Процессы и аппараты химической технологии. 2-е изд., перераб. и дополн.- М.: Химия, 1991-496с.

12. Колонные аппараты. Каталог. М.: ЦИНТИХИМНЕФТЕМАШ, 1978. 31 с.

13. Касаткин А. Г., Дытнерский Ю. И., Кочергин Н. В. Тепло- и массоперенос. Т. 4. Минск: Наука и техника. 1966. С. 12—17.


Дата: 2019-07-24, просмотров: 210.