Высота ректификационной колонны насадочного типа находится из уравнения:
Нк=Ят+(т-1)рр+Яв+Ян+Нк+Нд (3.15)
где Z=5 м – высота насадки в одной секции; n – число секций; hр=1,215 – высота промежутков между секциями насадки, в которых устанавливают распределители жидкости, м: Zв= 1,2 м и Zн = 2 м – соответственно высота сепарационного пространства над насадкой и расстояние между днищем колонны и насадкой, Нк - высота крышки, Нд – высота днища.
n=(Hв + Hн)/Z, (3.16)
Hн =hэ н∙nт н Hв= hэ в∙nт в (3.17)
где Hв и Hн – высота слоя насадки в верхней и нижней частях колонны; hэ в и hэ н – эквивалентная высота насадки [8].
; (3.18)
где - критерий Рейнольдса [8]:
. (3.19)
Отношение L/G в верхней и нижней частях соответственно равны:
G/L=(R+1)/R=(6,1+1)/6,6=1,15;
G/L=(R+1)/(R+F)=(6,6+1)/(6,6+2,047)=0,88. (3.20)
Вязкость паров для верхней и нижней частей колонны:
μy в = M’в/(yв МД / μу Д + (1 - yв) МТ / μу Т);
μy н = M’н/(yн МД / μу Д + (1 – yн) МТ / μу Т), (3.21)
где
yв =(yD + yF)/2=(0,9+0,51)/2=0,705 кмоль / кмоль смеси;
yн=(yw + yF)/2=(0,02+0,51)/2=0,265 кмоль / кмоль смеси. (3.22)
μy в = 89,18/(0,705∙88 / 0,009 + (1 – 0,705) 92 / 0,0089)=0,009 мП∙с;
μy н = 90,94/(0,265∙88 / 0,009 + (1 – 0,265) 92 / 0,0089)=0,0089 мП∙с.
Тогда:
;
.
Для определения m – тангенса угла наклона равновесной линии для верхней и нижней частей колонны добавим линию тренда:
Рис. 3.3. Касательные к линии равновесия
Тогда для верхней и нижней частей колонны m соответственно равно 0,83 и 1,18. Следовательно:
м;
м.
Высота слоя насадки для верхней и нижней частей колонны равны:
Нв=20∙0,73=14,6 м и Нн=15∙0,65=9,75 м.
Н=14,6+9,75=24,35 м.
Примем Н=25 м, то n=25/5=5 секций, 3 в верхней части колонны и 2 в нижней. Конечная высота ректификационной колонны равна:
Нк=5∙5+(5-1)∙1,215+1,2+2+0,3+0,3=33,66 м. Для дальнейших расчётов примем HК=40 м.
Гидравлическое сопротивление насадки
Гидравлическое сопротивление насадки ΔР находят по уравнению
ΔР=10169 ∙ UΔРс. (3.23)
Гидравлическое сопротивление сухой неорошаемой насадки ΔРС рассчитывают по уравнению [1]:
, (3.24)
где λ—коэффициент сопротивления сухой насадки, зависящий от режима движения газа в насадке.
Критерий Рейнольдса для газа в верхней и нижней частях колонны соответственно равен:
;
. (3.25)
Следовательно, режим движения турбулентный.
Для турбулентного режима коэффициент сопротивления сухой насадки в виде беспорядочно засыпанных колец Рашига находят по уравнению
λ= 16/ 2. (3.26)
Для верхней и нижней частей колонны соответственно получим:
=16/49680,2 = 2,92; = 16/51200,2 = 2,90.
Гидравлическое сопротивление сухой насадки в верхней и нижней частях колонны равно:
Па;
Па.
Плотность орошения в верхней и нижней частях колонны определим по формулам:
Uв=Lв/(ρх0,785d2), Uн=Lв/(ρх0,785d2). (3.27)
Подставив численные значения, получим:
Uв=1,853/(790∙0,785∙1,22)=0,0021 м3/(м2∙с),
Uн=2,476/(790∙0,785∙1,22)=0,0028 м3/(м2∙с).
Гидравлическое сопротивление орошаемой насадки в верхней и нижней частях колонны:
ΔР=10169∙ 0,0021∙2545 = 5762 Па; ΔР=10169∙ 0,0028∙1744 = 5185 Па.
Общее гидравлическое сопротивление орошаемой насадки в колонне:
ΔР = ΔРв + ΔРн = 5762 + 5185 = 10947≈ 11 000 Па.
Тепловой расчет установки.
Расход теплоты, отдаваемой охлаждающей воде в дефлегматоре-конденсаторе, находим по уравнению:
Qд=GD ∙ (1+R) ∙ rD, (3.28)
где rD-удельная теплота конденсации паров в дефлегматоре, кДж/кг.
rD=XD ∙ rд+(1-XD) ∙ rт , (3.29)
где rд –и rт –удельные теплоты конденсации диоксана и толуола при 94°С [8].
rд = 360 кДж/кг;
rт = 321 кДж/кг;
rD = 0,896 ∙ 360+(1 – 0,896) ∙ 321 = 356 кДж/кг;
Qд = 0,278 ∙ (1+6,6) ∙ 356 = 752 кВт.
Расход теплоты, получаемой в кубе-испарителе от греющего пара, находим по уравнению:
Qк= Qд+ GD ∙ СD ∙ tD+ GW ∙ СW ∙ tW – GF ∙ СF ∙ tF+Qпот, (3.30)
где Qпот приняты в размере 3% от полезно затрачиваемой теплоты; удельные теплоёмкости взяты соответственно при tD=94°С, tW=102°С, tF=96°С, температура кипения исходной смеси tF определена по t-x-y по диаграмме (рис.3.2).
СW = (0,54 ∙ 0,019 + 0,45 ∙ (1 - 0,019)) ∙ 4190 = 1893 Дж/(кг ∙ К);
СF = (0,53 ∙ 0,439 + 0,44 ∙ (1 - 0,439)) ∙ 4190 = 2009 Дж/(кг ∙ К);
CD = (0,52 ∙ 0,896 + 0,44 ∙ (1 - 0,896)) ∙ 4190 = 2144 Дж/(кг ∙ К).
CD, СW, СF-взяты из справочника [8].
Qк=(752000 + 0,278 ∙ 2144 ∙ 94 + 0,302 ∙ 1893 ∙ 102 – 0,58 ∙ 1893 ∙ 96) ∙ 1,03= = 760937 Вт ≈ 761кВт.
Расход теплоты в паровом подогревателе исходной смеси:
Q=1,05 ∙ GF ∙ СF ∙ (tF–tнач), (3.31)
где тепловые потери приняты в размере 5%, удельная теплоёмкость исходной смеси СF = (0,5∙ 0,439+0,42 ∙ (1-0,439)) ∙ 4190 = 1907 Дж/(кг ∙ К)
при t = (96+18)/2 =57 °С.
Q=1,05 ∙ 0,58 ∙ 1907 ∙ (96 – 18) = 90586 Вт.
Расход греющего пара, имеющего давление рабс=4 кгс/см2 и влажность 5%
а) в кубе испарителе:
Gгп=Q/(rгп ∙ X), (3.34)
где rгп=2141 ∙ 103 Дж/кг – удельная теплота конденсации греющего пара.
Gгп = 760937/(2141 ∙ 103 ∙ 0,95) = 0,374 кг/с;
б) в подогревателе исходной смеси
Gгп = 90586/(2141 ∙ 103 ∙ 0,95) = 0,045 кг/с.
Всего: 0,374 + 0,045 = 0,419 кг/с или 1,508 т/ч.
Расход охлаждающей воды при нагреве её на 200С в дефлегматоре:
Vв=Qд/(Св ∙ (tкон-tнач) ∙ ρв), (3.35)
где Св=4190 Дж/(кг ∙ К) - удельная теплота конденсации воды; ρв- плотность воды.
Vв=75200/(4190 ∙ 20 ∙ 1000)=0,009 м3/с или 32,4 м3/ч.
4 Механический расчет установки
Расчет толщины обечаек
Исполнительную толщину тонкостенной гладкой цилиндрической обечайки, нагруженной внешним давлением, рассчитываем по формуле:
, (4.1)
где pн – наружное давление, равное разности атмосферного и данного
760 - 600 = 160 мм. рт. ст. = 0,1- 0,08=0,02 МПа.
Т. к. среда является агрессивной и токсичной, то принимаем сталь 12Х18H10Т, для которой σ*=152 МПа [11],
С – прибавка к расчётным толщинам.
С = П ∙ τ, (4.2)
где П – скорость коррозии или эрозии, П = 0,1мм/год, τ – срок службы аппарата, принимаем τ = 20 лет.
С = 0,1 ∙ 20 = 2 мм.
К2=0,35 – коэффициент, определяемый по Рис. 13.1 [11].
[σ]=ησ*, (4.3)
где η = 1 – поправочный коэффициент, учитывающий вид заготовки (листовой прокат).
[σ]= 1 ∙ 160=160 МПа.
мм
Примем S = 8 мм.
Для обечаек с диаметром больше 200мм должно соблюдаться условие:
(S-C)/D < 0,1 (4.4)
(8 – 1)/1200 = 0,0058 < 0,1 - условие выполняется.
Проверим конструкцию на устойчивость по формуле:
Рн/[pн]+F/[F]+M/[M] 1. (4.5)
Т. к. аппарат имеет большую высоту, то М будет на порядок больше F. Тогда выражением F/[F] пренебрегаем.
Допускаемое наружное давление находят по формуле:
. (4.6)
Допускаемое давление из условия прочности находят по уравнению:
[pн]σ= 2 ∙ [σ] ∙ (S – C)/(D + S – C) (4.7)
Допускаемое давление из условия устойчивости в пределах упругости определяют по уравнению:
, (4.8)
где В1 – меньшее из двух, вычисленных по формулам:
В1=1; В1= , (4.9)
ny – запас устойчивости, равный 2,4.
Допускаемый момент находят по выражению:
(4.10)
Допускаемый изгибающий момент из условия прочности:
[М]σ= 0,25 ∙ π ∙ D ∙ [σ] ∙ (S – C) ∙ (D + S – C) (4.11)
Допускаемый изгибающий момент из условия устойчивости:
(4.12)
Определим изгибающий момент.
Вес слоя насадки равен: G=9,8 ∙ Vн ∙ ρ= (3 ∙ 9 ∙ 3,14 ∙ 0,62) ∙ 540=161514 Н.
Учитывая вес обечаек (при S=16 мм это около 80 кН), днища, крышки, распределительных тарелок, фланцев и т. д., округлим до 0,3 МН. Тогда
M=G ∙ Hк ∙ 0,215 = 0,3 ∙ 34 ∙ 0,215=2,193 МН ∙ м.
Расчёты сведём в таблицу:
Таблица 4.1. Влияние внешнего давления и момента на устойчивость
S, м | [M]σ | [M]E | [M] | M/[M] | В1 | [p]E | [p]σ | [p] | Pн/[pн] | Pн/[pн]+ M/[M] |
0,007 | 0,908 | 1,437 | 0,768 | 2,857 | 0,446 | 0,013 | 1,328 | 0,013 | 1,502 | 4,359 |
0,008 | 1,091 | 2,266 | 0,983 | 2,232 | 0,407 | 0,023 | 1,592 | 0,023 | 0,869 | 3,101 |
0,009 | 1,273 | 3,332 | 1,190 | 1,844 | 0,377 | 0,037 | 1,856 | 0,037 | 0,548 | 2,391 |
0,010 | 1,457 | 4,652 | 1,390 | 1,578 | 0,352 | 0,055 | 2,119 | 0,055 | 0,367 | 1,945 |
0,012 | 1,824 | 8,127 | 1,779 | 1,232 | 0,315 | 0,107 | 2,645 | 0,106 | 0,188 | 1,420 |
0,014 | 2,192 | 12,820 | 2,161 | 1,015 | 0,288 | 0,184 | 3,168 | 0,184 | 0,109 | 1,124 |
0,016 | 2,562 | 18,848 | 2,538 | 0,864 | 0,266 | 0,292 | 3,690 | 0,291 | 0,069 | 0,933 |
При S=16 мм условие устойчивости выполняется.
Примем S=16 мм.
Дата: 2019-07-24, просмотров: 279.