2.1.Классическое описание условий магнитного резонанса.
Вращающийся заряд q можно рассматривать как кольцевой ток, поэтому он ведет себя как магнитный диполь, величина момента равна:
m=iS, (2.1)
где i-сила эквивалентного тока;
S - площадь, охватываемая кольцевым током.
В соответствии с понятием силы тока имеем:
i=qn,
где n=v/2pr-число оборотов заряда q в секунду;
v-линейная скорость;
r-радиус окружности, по которой движется заряд.
Если перейти к электромагнитным единицам (т.е. разделить заряд на с) и учесть, что S=pr2, то выражение (2.1) можно переписать в следующем виде:
m=qvr/2c. (2.2)
Вращающаяся частица с массой М обладает угловым моментом (или моментом импульса) L, представляющим собой вектор, направленный вдоль оси вращения и имеющий величину Mvr. Здесь L=[rp]= [rv], в данном случае r^v. И заряд, и масса участвуют в одном и том же вращении (вращательном движении), поэтому вектор магнитного момента коллинеарен вектору углового момента, с которым он связан соотношением
=(q/2Mc)L=gL, (2.3)
где g=q/2Mc-гиромагнитное отношение, являющееся индивидуальной характеристикой частицы (ядра).
Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.
Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента в векторной форме следующим образом:
d /dt=g[ ], (2.4)
где –напряженность внешнего магнитного поля.
Если в отсутствии магнитного поля вращать вектор с угловой скоростью , то, в соответствии с законом Ньютона для вращательного движения, выражение для d /dt будет иметь вид:
d /dt=[ ]. (2.5)
Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля в точности эквивалентно вращению момента с угловой скоростью =-g (2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]).
Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора с постоянной угловой скоростью -g независимо от направления вектора , т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора.
Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g , то при отсутствии других магнитных полей вектор магнитного момента в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует.
Рис.1. Прецессия магнитного момента в магнитном поле
Допустим теперь, что кроме поля введено другое, более слабое поле 1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению (рис.1). Если скорость вращения поля 1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [ 1], который стремится повернуть ядерный момент в плоскость, перпендикулярную . Если направление 1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.
Если, однако, само поле 1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента , т.е. большие изменения угла между и 0. При изменении угловой скорости вращения поля 1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса.
Аналогичное явление резонанса должно наблюдаться, когда направление поля 1 фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс.
Рис.2. Разложение вектора магнитного поля на два вектора, вращающиеся в противоположные стороны.
На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю 0 и направлена вдоль оси х, пропускают переменный ток. Напряжение с частотой w, приложенное к катушке, создает поле, эквивалентное двум вращающимся в противоположных направлениях полям величиной (Н1cos wt+H1sin wt) и (H1cos wt – H1sin wt).
Если w соответствует частоте резонанса, магнитный диполь поглощает энергию поля, создаваемого катушкой, вследствие чего вектор магнитного момента отклоняется в направлении к плоскости ху и во второй (приемной) катушке, расположенной вдоль оси у, наводится э.д.с.
Т.о., рассмотренная здесь классическая модель резонанса, объясняя суть явления, указывает и на экспериментальное его проявление, состоящее в непрерывном поглощении электромагнитной энергии поля Н1.
2.2.Квантово-механическое рассмотрение условий резонанса.
При включении магнитного поля каждое ядро приобретает дополнительную энергию -m , которую называют зеемановской. Гамильтониан в этом случае имеет очень простой вид
H=-m (2.8)
Направляя ось z вдоль приложенного постоянного магнитного поля 0, получаем
H=-gh 0Iz (2.9)
Собственные значения этого гамильтониана являются произведениями величины gh 0 на собственные значения оператора Iz . поэтому возможные значения энергии равны
Е=-gh 0m , m= I , I-1 , … , -I . (2.10)
Чаще всего для наблюдения магнитного резонанса применяют переменное магнитное поле, направленное перпендикулярно постоянному полю. Если амплитуду переменного поля обозначить через H0x, то часть полного гамильтониана, приводящая к переходам, будет иметь вид
Hвозм=-gh 0xIxcoswt (2.11)
Оператор Ixимеет отличные от нуля матричные элементы (m’êIx êm), связывающие состояния m и m’, только в случае выполнения равенства m’=m+\-1. В соответствии с этим разрешены переходы только между соседними уровнями, что дает
hw=DE=gh 0 (2.12)
или
w=g 0 (2.13)
Это соотношение позволяет вычислить частоту, при которой можно наблюдать резонанс, если известно, каким образом можно определить g.
Вычислим магнитный и механический моменты частицы массой mи заряда e, движущейся по окружности радиуса r с периодом Т. В этом случае механический момент
J=mvr=m(2pr2/T), (2.14)
а магнитный момент
m=iA (2.15)
(рассматриваем систему как контур тока i, охватывающий площадь А). Поскольку i= (e/c)(1/T), получаем
m=(е/c)(pr2/T). (2.16)
Сравнение вычисленных значений m и J дает g=m/J=e/2mc. Помимо оценки порядка величины g эта формула позволяет сделать вывод о том, что g для ядер должна быть на три порядка меньше величины g для электронов. Следует пользоваться самыми сильными магнитными полями, какие могут быть получены в лабораторных условиях, т.к. при этом возрастает величина поглощаемых квантов, и сигнал резонанса увеличивается.
Дата: 2019-07-24, просмотров: 170.