Медиаторы воспаления, их виды, происхождение и значение в развитии воспалительного процесса.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Медиаторы воспаления – это местные химические сигналы, образующиеся, освобождаемые либо активируемые в очаге воспаления, действующие и разрушаемые также в пределах очага.

Источники медиаторов – плазма крови (тканевая жидкость), либо клетки-участники воспаления. Гуморальные медиаторы пептидной природы при воспалении активируются путем ограниченного протеолиза.

Клеточные медиаторы могут синтезироваться заново (простагландины, ИЛ-1, ИЛ-2), а также освобождаться в готовом виде из депо чаще всего путем дегрануляции или экзоцитоза из структур, гомологичных фаголизосомам. Наиболее богатым спектром медиаторов, освобождаемых и синтезируемых заново, обладает макрофаг. Кон образно называет эту клетку «циркулирующим гепатоцитом» за ее необычайные биосинтетические возможности. Кроме того, важными источниками клеточных медиаторов служат гранулоциты, тучные клетки, эндотелиоциты и тромбоциты.

Поскольку большинство медиаторов многофункционально, вряд ли плодотворны попытки классифицировать их по эффектам. Наиболее не противоречивой представляется химическая классификация медиаторов по их строению (низкомолекулярные кислородсодержащие радикалы, пептидные, липидные, полисахаридные медиаторы и биогенные амины).

Биогенные амины

К данной группе относятся гистамин, серотонин, а также полиамины (спермин, спермидин, путресцин, кадаверин). Гистамин поступает в очаг воспаления при дегрануляции мастоцитов (с их рекордным содержанием этого медиатора – до 3,5 пг на клетку), а также из базофилов (содержащих до 1 пг на клетку), тромбоцитов, эозинофилов и, в гораздо меньшей степени, гладкомышечных клеток и эндотелия. Он образуется при посредстве гистидиндекарбоксилазы из гистидина во всех клетках, но только тучные клетки накапливают его в значительных количествах в гранулах. Отметим, что дегрануляция возможна в ответ на различные стимулы:

> Связывание антигенов через гомоцитотропные иммуноглобулины и реагиновые рецепторы (при анафилактическом воспалении).

> Связывание фрагментов комплемента – анафилотоксинов С5a и С, в меньшей мере С4a (при обычном и анафилактическом воспалении).

> Нейропептиды диффузной эндокринной системы, например, вещество Р (при астме, вызванной физическими усилиями).

> Цитокины (ИЛ-1 и ИЛ-8) при гиперчувствительности замедленного типа (ГЗТ).

> Физические повреждения клеток (при механической или температурной травме).

> Агонисты простагландиновых рецепторов (изоцианаты синтетических красок и герметиков при аллергоидной «астме новостроек»).

> Никотиновую кислоту (при аллергоидной крапивнице в ответ на витамин РР).

При воспалении гистамин вызывает расширение артериол и повышение проницаемости венул. Он усиливает секрецию слизи, вызывает зуд и боль, способствует освобождению кининов и липидных медиаторов. Другие его эффекты перечислены в таблице 1. Следует отметить, что гистамин сужает крупные сосуды (что делает его участником анафилактического коронароспазма) и, подавляя функцию номотопного водителя сердечного ритма (через H1-рецепторы), способен вызвать аритмии, вплоть до фибрилляции (с участием Н2-рецепторов). Эти эффекты смертельно опасны при аллергическом и аллергоидном шоке.

Действие гистамина не продолжительно из-за его инактивации.

Серотонин у человека в тучных клетках отсутствует. В связи с этим считается, что его роль в воспалении у человека менее важна. Его источником могут быть тромбоциты, эозинофилы, а в кишечнике – энтерохромаффинные клетки. Медиатор образуется из триптофана и представляет собой 5-гидрокситриптамин.

В очагах воспаления освобождению серотонина способствуют агреганты и активаторы тромбоцитов, в частности, фактор активации тромбоцитов и тромбин, а также иммунные комплексы.

Серотонин имеет 4 типа рецепторов, действуя через которые он повышает проницаемость венул, способствует агрегации тромбоцитов, активирует моноциты. В то же время, он вызывает спазм гладких мышц в бронхах и неоднозначно влияет на сосуды. Серотонин способен оказать прямой вазоконстрикторный эффект, особенно на венулы, внося вклад в формирование стаза. На мозговые сосуды серотонин действует как вазоконстриктор (возможно, его эффект опосредован нервами) и участвует в патогенезе мигрени. Серотонин как нейромедиатор используется ядрами шва и участвует в регуляции сна и бодрствования, передаче сенсорной информации, формировании эмоций, а при системном гормональном действии стимулирует стероидогенез в надпочечниках.

Полиамины рассматриваются как противовоспалительные медиаторы и стимуляторы репарации, клеточные медиаторы ростового эффекта соматомединов.

Катехоламины тромбоцитарного происхождения участвуют в развитии спазма сосудов и восстановлении нарушенной сосудистой проницаемости. Подробнее роль биогенных аминов представлена в Таблице 1.

Полипептидные медиаторы

Большинство полипептидных медиаторов воспаления присутствует в биологических жидкостях организма до начала воспаления в неактивной форме и вступает в действие в результате каскадного протеолиза.

Условно их можно подразделить на несколько групп: контактную систему плазмы крови, лейкокинины, цитокины, ферменты и антиферменты, катионные не ферментативные белки, транспортные и распознающие белки, нейропептиды, факторы роста.

Транспортные белки-участники воспаления – это церулоплазмин, транскобаламин, трансферрин, ферритин, которые, в основном, имеют значение как компоненты антиоксидантных и прооксидантных механизмов тканей.

Компонентами сторожевой системы являются плазменные протеазы: комплемент, свертывающая система, система фибринолиза и кининовая система. Они функционально едины, тесно связаны макрофагальным происхождением своих белков, имеют общее свойство «плавающих регуляторов» (в крови имеются их проактиваторы), работают по каскадному принципу, взаимно запускают друг друга и имеют общие эффекторы. Ядром сторожевой полисистемы служат 4 белка:

1. Фактор Хагемана (XII фактор свертывания крови);

2. Высокомолекулярный кининоген;

3. Плазменный прекалликреин;

4. XI фактор свертывания крови.

Система комплемента

Ранее предполагалось, что существует единственный термолабильный компонент плазмы, опосредующий литическое действие антител на бактерии. К настоящему времени идентифицировано 13 белков системы комплемента и 7 ингибиторов. Эти регуляторы циркулируют в неактивной форме (за исключением фактора D, который в активном виде присутствует в плазме в малых количествах), самособираются в ответ на определенные сигналы, активируют друг друга (причем служат при этом сериновыми протеазами и/или взаимными рецепторами), а в результате осуществляют несколько важных эффектов:

> Лизис мишеней, активирующих комплемент;

> Опсонизация объектов, фиксирующих факторы комплемента;

> Хемотаксис и усиление фагоцитоза;

> Активация лейкоцитов и опосредование их адгезии;

> Регуляция иммунного ответа;

> Освобождение медиаторов воспаления.

Белки комплемента условно подразделяются на факторы классического пути активации (обозначаются буквой С с ответствующими индексами – С1, С2, С4), факторы альтернативного пути активации (В, D), терминальные компоненты комплекса мембранной атаки (С5, С6, С7, С8, С9), а также усилители и ингибиторы комплемента (Р, Н, I, С4dp, DAF, МСР, НRF, С1INН и др.). Особняком стоит центральный фактор всей системы С, входящий в оба пути активации комплемента и участвующий в реализации практически всех его функций.

Медицина нередко встречается с наследственными и приобретенными дефектами системы комплемента. Эти состояния разнообразны и могут быть вызваны как наследственными мутациями (дефициты С1INH, Р, I), так и приобретенными состояниями, но их клинические проявления, как правило, сходны и включают снижение устойчивости к бактериальным инфекциям из-за нарушения литических и опсонизирующих функций комплемента, и развитие иммунокомплексных заболеваний (ИК-синдромов) из-за помех в клиренсе иммунных комплексов.

Тотальная активация комплемента происходит при контакте плазмы с мембранами ионо-обменников искусственной почки и других устройств для экстракорпоральной терапии. Аналогичные осложнения могут быть и у пациентов с эндопротезами сосудов. Результатом является системное действие анафилотоксинов и медиаторов активированных комплементом лейкоцитов, что формирует постперфузионный синдром, сопровождаемый лихорадкой, шоком, внутрисосудистым гемолизом, лейкопенией и гипокомплементемией потребления, кровоточивостью по капиллярному типу. Синдром исключается только в том случае, если все поверхности, с которыми контактирует кровь (плазма), будут неактивирующими.

Системная активация комплемента происходит при бактериемии грамотрицательными возбудителями, особенно, сальмонеллами, менингококками, пневмококками, гемофильной палочкой, при вирусемии возбудителями геморрагических лихорадок. Это важный элемент патогенеза инфекционно-токсического шока (шокового легкого).

При ожоговой болезни в системном кровотоке появляется избыток активных фрагментов комплемента, обусловливающих, наряду с прочими факторами, развитие ожогового шока и респираторного дистресс-синдрома в легких.

При остром панкреатите и травмах поджелудочной железы панкреатические протеазы активируют сторожевую полисистему крови, проникая в системный кровоток. Это ведет не только к системному действию кининов, но и к продукции анафилотоксинов. У больных может развиться тяжелый коллапс, диссеминированное внутрисосудистое свертывание крови и плюриорганная недостаточность, в том числе, шоковое лёгкое.

Очень велика роль расстройств функций комплемента в развитии нефропатий. Все нефриты, в том числе, инфекционные стрептококковые протекают с гипокомплементемией. При мембранозно-пролиферативной форме хронического диффузного гломерулонефрита в крови появляются аутоантитела к активной форме конвертазы альтернативного пути комплемента. Аутоантитела к конвертазе классического пути комплемента присутствуют при остром постстрептококковом нефрите и системной красной волчанке. Эти аутоантитела (нефритогенные факторы) блокируют освобождение ингибитором Н фактора С3 из состава конвертазы, и происходит снижение плазменной концентрации этого фактора. В результате нарушается клиренс иммунных комплексов, и они откладываются в клубочках почек, активируется комплементзависимый лизис эндотелия и других тканей и ослабевает устойчивость к гноеродной, в том числе, менингококковой инфекции. Нефритогенный фактор характерен и для парциальной липодистрофии, зачастую сопровождаемой дефицитом С3 и гломерулонефритом. При любых видах нефротического синдрома факторы комплемента, особенно, В, Р и С4, теряются с мочой, что обусловливает вторичную гипокомплементемию и иммунодефицит по отношению к бактериальной инфекции. При цитотоксической форме аутоиммунного гломерулонефрита (подострый злокачественный гломерулонефрит с «полулуниями», гломерулонефрит при синдроме Гудпасчера) комплемент опосредует лизис ткани клубочков под воздействием аутоантител к компонентам их базальной мембраны.

При СПИДе имеется дефицит ряда факторов комплемента на фоне значительного избытка в крови С. В связи с иммуносупрессивным действием этого анафилотоксина предполагается, что его накопление вносит вклад в развитие иммунологической недостаточности у таких больных.

Содержание многих факторов комплемента снижено по сравнению с взрослыми у новорожденных и, особенно, недоношенных детей, при голодании и печеночной недостаточности. Поэтому во всех этих случаях понижена антибактериальная резистентность.

Дата: 2019-07-24, просмотров: 218.