Рассмотрим n – мерный интеграл
для . (2)
Будем считать, что область интегрирования , и что ограниченное множество в . Следовательно, каждая точка х множества имеет n координат: .
Функцию возьмем такую, что она ограничена сверху и снизу на множестве : .
Воспользуемся ограниченностью множества и впишем его в некоторый n – мерный параллелепипед , следующим образом:
,
где - минимумы и максимумы, соответственно, - ой координаты всех точек множества : .
Доопределяем подынтегральную функцию таким образом, чтобы она обращалась в ноль в точках параллелепипеда , которые не принадлежат :
(3)
Таким образом, уравнение (2) можно записать в виде
. (4)
Область интегрирования представляет собой n – мерный параллелепипед со сторонами параллельными осям координат. Данный параллелепипед можно однозначно задать двумя вершинами , которые имеют самые младшие и самые старшие координаты всех точек параллелепипеда.
Обозначим через n-мерный вектор, имеющий равномерное распределение в параллелепипеде : , где .
Тогда ее плотность вероятностей будет определена следующим образом
(5)
Значение подынтегральной функции от случайного вектора будет случайной величиной , математическое ожидание которой является средним значением функции на множестве :
. (6)
Среднее значение функции на множестве равняется отношению значения искомого интеграла к объему параллелепипеда :
(7)
Обозначим объем параллелепипеда .
Таким образом, значение искомого интеграла можно выразить как произведение математического ожидания функции и объема n- мерного параллелепипеда :
(8)
Следовательно, необходимо найти значение математического ожидания . Его приближенное значение можно найти произведя n испытаний, получив, таким образом, выборку случайных векторов, имеющих равномерное распределение на . Обозначим и . Для оценки математического ожидания воспользуемся результатом
, (9)
где ,
,
- квантиль нормального распределения, соответствующей доверительной вероятности .
Умножив двойное неравенство из (9) на получим интервал для I:
. (10)
Обозначим точечную оценку . Получаем оценку (с надежностью ):
. (11)
Аналогично можно найти выражение для относительной погрешности :
. (12)
Если задана целевая абсолютная погрешность , из (11) можно определить объем выборки, обеспечивающий заданную точность и надежность:
. (13)
Если задана целевая относительная погрешность, из (12) получаем аналогичное выражение для объема выборки:
. (14)
Сплайн – интерполяция.
В данном программном продукте реализована возможность задавать дополнительные ограничения области интегрирования двумя двумерными сплайн – поверхностями (для подынтегральной функции размерности 3). Для задания этих поверхностей используются двумерные сплайны типа гибкой пластинки \4\.
Под сплайном (от англ. spline - планка, рейка) обычно понимают агрегатную функцию, совпадающую с функциями более простой природы на каждом элементе разбиения своей области определения. Сплайн – функция имеет следующий вид:
. (15)
Исходные данные представляют собой троек точек .
Коэффициенты и определяются из системы:
, (16)
где ,
.
Алгоритм расчета интеграла
Реализованный алгоритм включает следующие шаги:
1) выбирается начальное значение , разыгрываются случайные векторы из и определяются и ;
2) в зависимости от вида погрешности (абсолютная, относительная) определяется достигнутая погрешность; если она меньше целевой, вычисление прерывается;
3) по формулам (13) или (14) вычисляется новый объем выборки;
4) объем выборки увеличивается на 20%
5) переход к шагу 1;
6) конец.
Дата: 2019-07-24, просмотров: 167.