Пусть входящий в открытую марковскую сеть массового обслуживания поток заявок описывается чистым процессом размножения с интенсивностью , причем в i-ую систему массового обслуживания входящая заявка поступает с вероятностью . Времена обслуживания заявок в i-той системе массового обслуживания распределены по показательному закону , зависящим от текущего числа заявок в i-той системе i=1,...,n.
Дисциплины обслуживания заявок в системе сети FIFO. Переходы заявок между системами, а также уход заявки из сети описывается неприводимой цепью Маркова. Заявка, завершающая обслуживание в системе , переходит с вероятностью в систему , есть вероятность ухода заявки из i-ой системы массового обслуживания сети.
В этом случае многомерный процесс N (t), определяющий состояние сети, является многомерным аналогом процесса размножения и гибели. Предположим, что существует стационарное распределение
,
принимает все возможные значения. Тогда, аналогично как и для одномерного процесса размножения и гибели, можно показать, что стационарное распределение единственно и удовлетворяет системе уравнений равновесия (баланса), которая представляет собой систему линейных разностных уравнений:
Для упрощения системы (1) введем величины так, что есть полная интенсивность поступления заявок в системы . Интенсивность состоит из интенсивности потока заявок, поступающих извне , и интенсивности поступления заявок в систему от других СМО, в том числе и от самой системы .
Поэтому (2).
Из (2) получим (3).
Соотношение (2) иногда называют законом сохранения потока заявок. Оно говорит о том, что интенсивность входящего потока заявок в i-тую СМО, i=1,..., n, в стационарном режиме равна интенсивности входящего потока заявок из этой системы.
Теорема1. (Джексона) Стационарное распределение может быть найдено в виде:
Нахождение решения для немарковского случая
Составив и решив систему дифференциально-разностных уравнений, найдется вид функции распределения
для случайного процесса . Тогда можно найти и .
Так что нахождение функций
решит поставленную задачу.
Марковский случай
Описание модели
1
Сеть массового обслуживания
Дана открытая марковская сеть массового обслуживания, состоящая из трех подсистем. Состояние сети в момент времени t определяется вектором
число заявок в i-ой подсистеме в момент времени t. Входящий поток является пуассоновским потоком с параметром . Времена обслуживания заявок в i-ой системе массового обслуживания распределены по показательному закону с параметром , зависящим от текущего числа заявок в i-ой системе, i=1,2,3.
Заявки поступают из общего потока заявок во второй узел и первый узел с вероятностями и соответственно. После обслуживания во втором узле заявки поступают на третий узел. А после обслуживания на первом узле заявки поступают с вероятностью в третий узел либо с вероятностью в первый узел, либо с вероятностью в третий узел. После обслуживания на 3 узле заявки уходят из системы.
Уравнения равновесия
Предположим, что существует стационарное распределение . Составим уравнение равновесия.
P
P + P +
+ P + P +
+ P + P +
+ P
Дата: 2019-07-24, просмотров: 188.